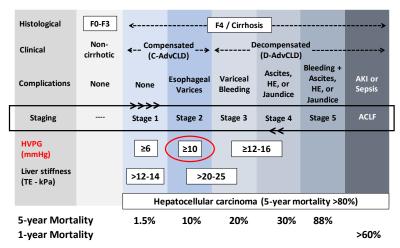


What is new in the management of cirrhosis?

Andrés Duarte-Rojo

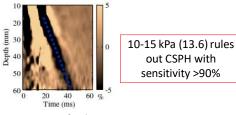

Medical Director of Liver Transplantation

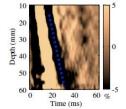
2020 Annual Update in Medical Hepatology

December 5th, 2020

Histological FO-F3 F4 / Cirrhosis Non-Compensated Decompensated Clinical (D-AdvCLD) cirrhotic (C-AdvCLD) Bleeding + Ascites, Variceal Ascites, AKI or Fsonhageal Complications HE, or None None Varices **Bleeding** HE, or Sepsis Jaundice **Jaundice** ACLF Staging Stage 5 Stage 2 Stage 3 Stage 4 Stage 1 HVPG ≥6 ≥10 ≥12-16 (mmHg) Liver stiffness >20-25 >12-14 (TE - kPa) Hepatocellular carcinoma (5-year mortality >80%) 5-year Mortality 1.5% 10% 20% 30% 88% 1-year Mortality >60%

Objectives

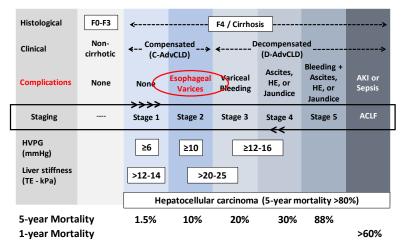




Clinically significant portal hypertension (CSPH)

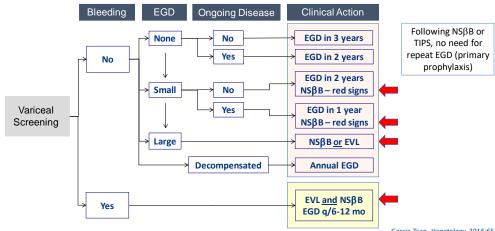
- Marks the transition from low to high risk of decompensation / death
 - Traditionally identified through hepatic venous pressure gradient (HVPG) ≥10 mmHg

VCTE-LSM of 27 kPa


20-25 kPa (21) rules in CSPH with specificity >90%

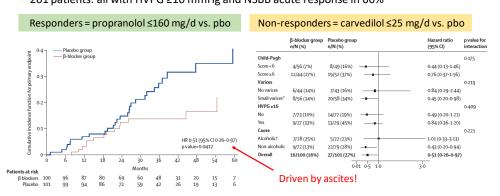
VCTE-LSM of 12 kPa

Two societies have endorsed (AGA, Baveno) elastography to identify CSPG

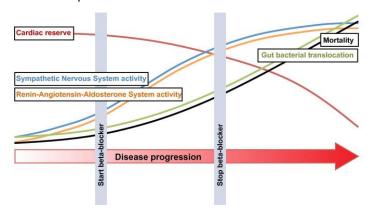

AASLD expected to release the Non-Invasive Liver Disease Assessment (NILDA) Practice Guidance in 2021

Objectives

Prophylaxis of variceal bleeding

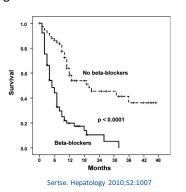


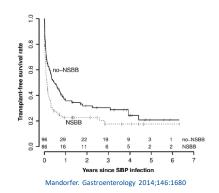
Garcia-Tsao. Hepatology 2016;65:310 de Franchis, J Hepatol 2015;63:743


Other benefits of beta-blockers

- Can beta blockers help prevent decompensation and death?
 - 201 patients: all with HVPG ≥10 mmHg and NSBB acute response in 66%

Beta-blockade therapeutic window

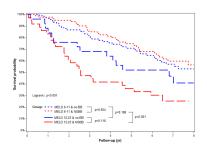

• When should we stop beta-blockers?

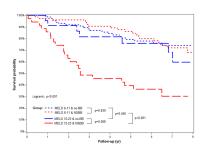


Villanueva. Lancet 2019;393:1597 Ge. J Hepatol 2014;60:643

Beta-blockade therapeutic window

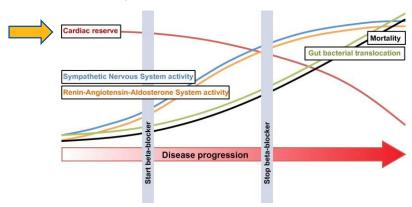
• Negative effects of beta blockers

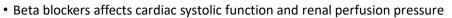




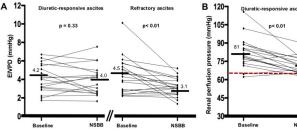
Beta-blockade therapeutic window

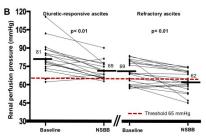
- · Negative effects of beta blockers
 - Increased mortality in alcohol-related cirrhosis if MELD ≥12




Cales. Liver Int 2020;in press Facciorusso. Dig Dis Sci 2018;63:1737 Onali. Liver Int 2017;37:1334 Scheiner. Scand J Gastroenterol 2017;52:1008

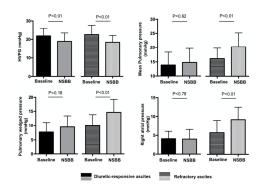
Beta-blockade therapeutic window


• When should we stop beta-blockers?



Beta-blockade therapeutic window

• Diuretic-responsive ascites (n=18) vs. refractory ascites (n=20) after 4 weeks of NSBB

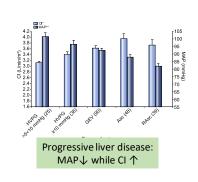

Tellez. J Hepatol 2020;73:1404 Thomas. Circulation 2005;112:1684

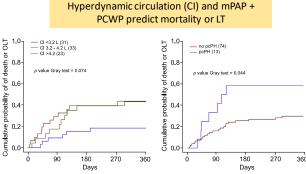
Beta-blockade therapeutic window

- Beta-blockade therapeutic window

- Beta blockers affects cardiac systolic function and renal perfusion pressure
 - Diuretic-responsive ascites (n=18) vs. refractory ascites (n=20) after 4 weeks of NSBB

Apart from dropping HVPG (as expected), NSBB increased...

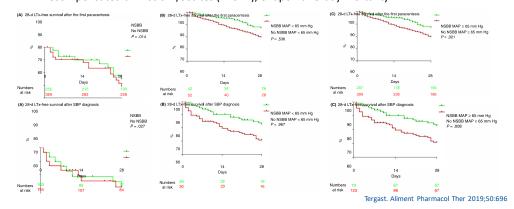

Pulmonary wedged pressure (PCWP)
 Pulmonary pressure (mPAP)
 Right atrial pressure


...only in those with refractory ascites

Translated: NSBB worsened hyperdynamic circulation of cirrhosis

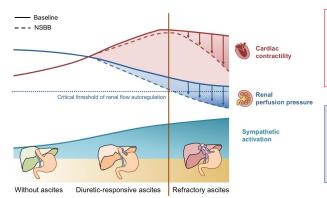
Tellez. J Hepatol 2020;73:1404

- Cardiopulmonary hemodynamics and worse clinical outcomes in cirrhosis
 - 238 patients with "per protocol" catheterization



Turcot. J Hepatol 2018;73:1404

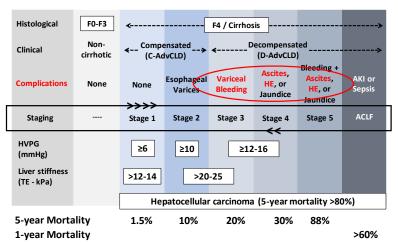
Beta-blockade therapeutic window



- Impact of beta blockers on survival following a hospital admission
 - Decompensated cirrhosis w/ascites (n=647), endpoint 28-day mortality

Beta-blockade therapeutic window

• When should we stop beta-blockers?

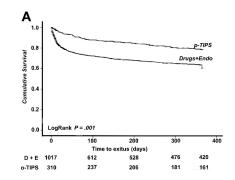

When the balance between sympathetic activation and cardiac function is broken and affect autoregulation

Perhaps... Refractory ascites and SBP with high MELD

When MAP <65 mmHgThe frail?

Tellez. J Hepatol 2020;73:1404

Objectives



Preemptive TIPS - acute variceal bleeding

- 1-year mortality for TIPS within 72 hrs vs. EGD EBL + NSBB in CTP <14
 - CTP B + active bleeding and CTP B meta-analysis of 7 studies with 1327 patients

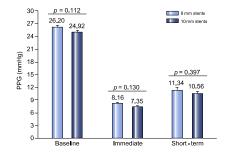
Nicoara-Farcau. Gastroenterology;in press Hernandez-Gea. Hepatology 2019;69:282

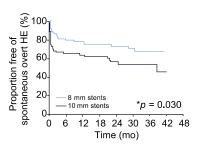
Post-TIPS HE

• Develops in 20-50% of cases and it is refractory in ≈10%

Risk Factors	Adjusted Hazards Ratio
Age	1.05 (1.02–1.08)
Prior OHE Minimal HE	2.45 (1.66–3.58) 1.79 (1.21–2.65)
СТР В СТР С	2.57 (0.61–10.8) 4.32 (0.96–19.3)
Bilirubin (each 0.6 个)	1.06 (1.03-1.08)
Creatinine (each 0.1 个)	1.09 (1.05–1.13)
Albumin (each 0.5 ↓)	0.68 (0.56-0.83)
Sodium (each 5 个)	0.63 (0.53-0.74)
Portocaval gradient (1 mmHg ↓)	1.16 (OR)
Diabetes	1.86 (1.20-2.87)
Other	Sarcopenia, PPI, NSBB, statin

Only if desperate with a MELD > 20


Probably not a good idea if MELD >15

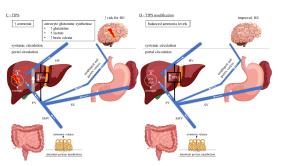

Be certain about proper indication for TIPS

Post-TIPS HE

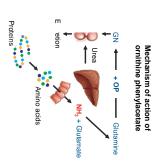
- Smaller diameter TIPS are safer (without compromising efficacy)
 - 127 patients randomized to 8 vs. 10 mm stents

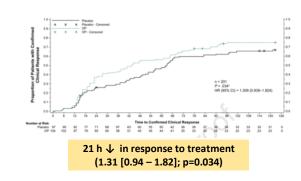
Schindler. J Clin Med 2020;9:3784

Wang. J Hepatol 2017;67:508


Post-TIPS HE

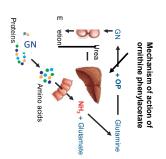
Post-TIPS HE




• Treatment of refractory HE

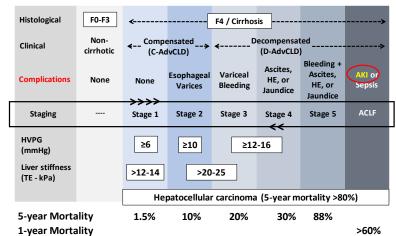
No. with Refractory HE/Treated with TIPS	Child-Pugh Class	No. of Patients Improved	PPG Pre (mmHg)	PPG Post (mmHg)
3/82	B: 1 C: 2	3	5.6 ± 3.2	12.1 ± 2.7
2/38	B: 1 C: 1	2	6.5 ± 2.6	12.7 ± 3.8
1/29	C: 1	1	-	-
10/174	-	8	8.6 ± 4.1	13.0 ± 4.0
20/344	A: 7 B: 9 C: 4	11	7.7 ± 3.9	12.1 ± 4.4

• Ornithine phenylacetate (OPA)


EASL. J Hepatol 2017;66:1047 Lee. Hepatology 2012;55:965

Schindler. J Clin Med 2020;9:3784

Post-TIPS HE


• L-ornithine-L-aspartate (LOLA)

Pharmacologic intervention	Direct estimate, OR (95% CI)	Network estimate, OR (95% PI)	Quality of evidence
LAC vs placebo	0.21 (0.08-0.58)	0.22 (0.09-0.52)	Moderate
LOLA vs placebo	0.19 (0.05-0.77)	0.19 (0.04-0.91)	Moderate
RIF vs placebo	0.38 (0.06-2.43)	0.44 (0.09-2.11)	Low
PRO vs placebo	0.24 (0.09-0.62)	0.27 (0.11-0.62)	Low
RIF vs LAC	1.96 (0.17-22.30)	2.04 (0.39-10.54)	Very low
PRO vs LAC	1.25 (0.49-3.16)	1.22 (0.52-2.85)	Very low
LOLA vs LAC		0.87 (0.15-5.20)	Very low
RIF vs LOLA	_	2.33 (0.26-21.19)	Very low
PRO vs LOLA	_	1.40 (0.24-8.25)	Very low
PRO vs RIF	_	0.60 (0.11-3.31)	Very low

LOLA presumably as effective as lactulose for OHE breakout

Objectives

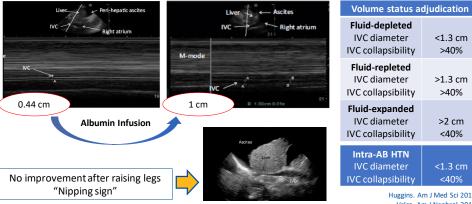
Dhiman. Clin Gastroenterol Hepatol;in press

Acute kidney injury (AKI) in cirrhosis

Volume responsiveness in AKI

• ICA - AKI criteria

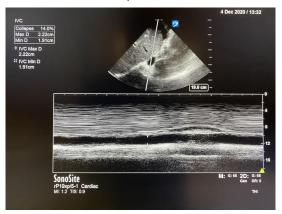
AKI-ICA: acute kidney injury, International Club of Ascites


	Definition		
AKI	 ↑ sCr≥0.3 mg/dLin last 48 hours ↑ sCr≥50% from baseline within last 7 days* 		
AKI Staging	Stage 1 • sCr ≥0.3 mg/dL or • x1.5-2 baseline	Stage 2 • >x2-3 baseline	Stage 3 • >x3 baseline • sCr ≥4.0 or Dialysis

^{*}sCr obtained up to 3 months before AKI admission could be used instead

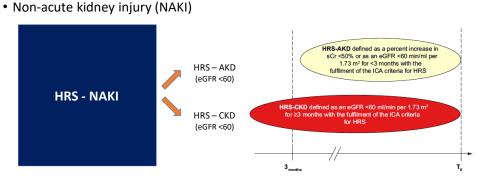
All proportional changes, no fixed threshold (i.e., 1.5 mg/dL)

Angeli. J Hepatol 2015;62:968


• No accurate method to detect fluid intravascular volume in cirrhosis

Huggins. Am J Med Sci 2016;351:55 Velez, Am J Nephrol 2019:50:204

Volume responsiveness in AKI


• Patient with refractory ascites on diuretics admitted for AKI (Cr 3.9 and ↑)

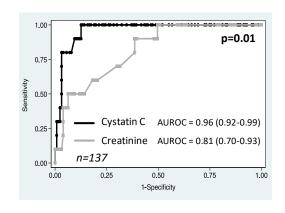
UNa 11 FEUrea 12.5% IV Albumin (48-h challenge) Serum Alb 3.7 g/dL

Volume-expanded Thus, stopped albumin

Non-acute (chronic) kidney injury in cirrhosis

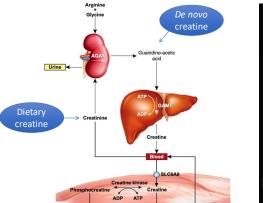
Fixed threshold (greatly affected by skeletal muscle mass loss)

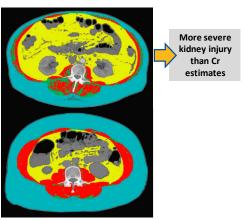
Angeli. J Hepatol 2019;71:811


Creatinine overestimates GFR in cirrhosis

Acute kidney injury (AKI) in cirrhosis

• GFR <60 mL/min using iothalamate clearance as reference



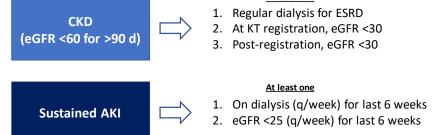

Cystatin C better predicts mortality (vs. Cr)

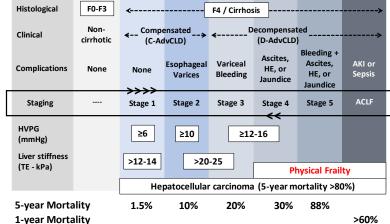
Cystatin C better predicts HD or SLKT (vs. Cr)

Useful for both females and males (unlike Cr)

Personal communication. Dr. Stevan Gonzalez

Francoz. J Hepatol 2010;52:605


Simultaneous Liver Kidney Transplantation


Objectives

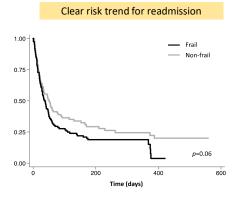
• Change in UNOS Policy since August 10, 2017

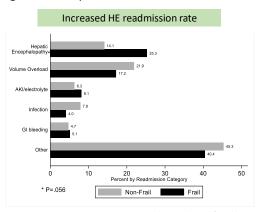
Clinical Non-cirrhotic (C-AdvCLD)

At least one

Frailty in inpatients

- Frailty in inpatients


- · Value of liver frailty index prior to discharge from hospital
 - 211 patients from 3 centers (UPMC, UPenn, UCSF)


	Non-home discharge		All-cause mortality	
	Model 1	Model 2	Model 1	Model 2
	(LFI >4.5 vs ≤4.5)	(LFI per 1-point 个)	(LFI >4.5 vs ≤4.5)	(LFI per 1-point 个)
	aOR (95% CI)	aOR (95% CI)	sHR (95% CI)	sHR (95% CI)
Age	1.04 (1.00-1.08)	1.02 (0.98-1.07)	1.03 (1.00-1.07)	1.03 (1.00-1.06)
Frailty	1.88 (0.74-4.78)	1.92 (1.22-3.01)‡	2.20 (1.03-4.70) +	1.52 (1.09-2.14) ‡
MELD-Na	1.05 (1.00-1.09) [‡]	1.04 (0.99-1.09)	1.03 (1.00-1.06)	1.03 (0.99-1.06)

NSBB associated with worse frailty metrics

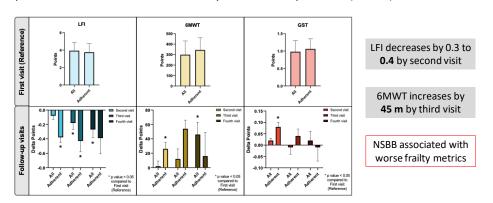
Serper & Tao. Submitted for publication

• Value of liver frailty index prior to discharge from hospital

Serper & Tao. Submitted for publication

Frailty in inpatients

- · Value of liver frailty index prior to discharge from hospital
 - Closer follow-up in clinic
 - Referral to a rehabilitation program



www.el-fit.pitt.edu

Duarte-Rojo. Liver Transpl;in press

Value of rehabilitation in frailty with cirrhosis

• Improvement in LFI and 6MWT mainly in adherent patients (n=517)

Visina & Lin. Manuscript in preparation

Frailty as an expression of decreased reserve

Cirrhosis

Functional deterioration <</p>

Frailty

Death

Nutritional Status

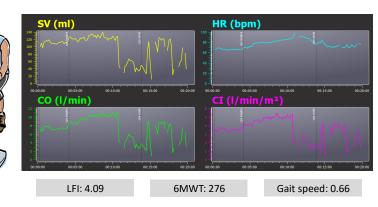
Diet, Malabsorption, Catabolic Status

Sarcopenia

(quantity/quality)

Progressive Malnutrition

Declining phase



Frailty and cardiomyopathy

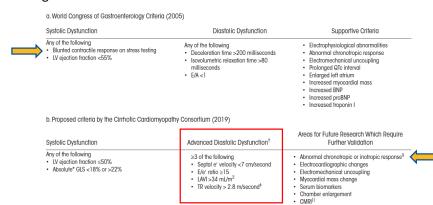
· Cardiopulmonary exercise testing and impedance cardiography

Cirrhotic cardiomyopathy

Physical Fitness

Physical Activity + Exercise

Cardiopulmonary


Fitness (low)

Declining activity

counts

Physical Deconditioning

Duarte-Rojo. Liver Transpl 2018;24:122

Cirrhotic cardiomyopathy

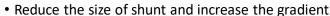
- TIPS and cirrhotic cardiomyopathy
 - Female 67 yo with decompensated cirrhosis, presents with severe SOB post-TIPS

TTE 10/09/2020		
EF 68%		
RVSP	26 mmHg (2.8 m/s)	
LAVI	42 mL/m ²	
RA area	normal	
e'	7	
E/e'	18	
Diastolic Dysf.	Grade 2	

TTE 11/09/2020		
EF	55-60%	
RVSP	56 mmHg (3.2 m/s)	
LAVI	35 mL/m ²	
RA area	dilated	
e'	7	
E/e'	20	
Diastolic Dysf.	Grade 3	

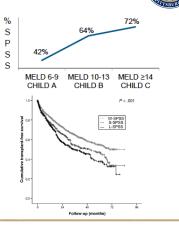
Izzy. Hepatology 2020;71:334

Apart from COVID, some other new things...


- Use NILDA to risk-stratify patients with clinically significant portal hypertension
- NSBB are still key in the management of cirrhosis (bleeding, ascites, mortality)
- Beware of therapeutic window for NSBB decompensated patients (MAP?)
- Preemptive TIPS in acute variceal bleeding if CTP B + active bleeding or CTP C
- Mind the risk for post-TIPS HE and try to prevent it by using 8 mm TIPS
- For HE, OPA has not made it to market, but for now can use LOLA (supplement)
- In AKI, volume responsiveness is key and IVC US is an emerging resource
- Cystatin C is a better marker of kidney function than creatinine (SLKT)
- Frailty assessment in inpatients can help better triage care transitions
- Cardiomyopathy is an uncommon yet overlooked condition, use novel criteria

duarterojoa@upmc.edu

Managing post-TIPS refractory HE


Extrinsic

Spontaneous shunts & HE

- 1729 patients with cirrhosis
 - Large SPSS 28% (≥8 mm) splenorenal
 - Small SPSS 32% (<8 mm) paraumbilical

Pereira. Cardiovasc Intervent Radiol 2016;39:170

Simon-Talero. Gastroenterology 2018;154:1694