2019 Annual Update in Medical Hepatology

An Integral Approach to Treat Alcohol-Induced Liver Disease

Ramon Bataller, MD, PhD

Division of Gastroenterology, Hepatology and Nutrition University of Pittsburgh Medical Center

NATURAL HISTORY OF ALD

COLD WEATHER AND SUNLIGHT HOURS AND ALCOHOL ABUSE

Living in a cold, dark climate linked to heavy drinking

The Scientific Reason We Want To Drink More Alcohol When It Gets Colder And Darker

A new study from the US has found a direct link between decreasing temperatures and hours of sunlight with alcohol consumption.

BY KATIE O'MALLEY 19/11/2018

A bottle of Merlot shared over a takeaway with a friend. A round of pale ales in the pub on a Saturday night. Several rum and cokes at a work Christmas party.

CAUSES OF MODERATE LIVER DISEASE

Prevalence of liver fibrosis in 1,358 subjects in France: 7.5%

Underlying cause of liver fibrosis:

Worldwide Lack of Early Referral of Patients with Alcoholic Liver Disease: Results of the Global Alcoholic Liver Disease Survey (GLADIS)

Neil D. Shah¹, Meritxell Ventura Cots^{1,2}, Nerma Zahiragic⁷, Mohamed Yacoub¹⁰, Andrew Wandera³, Julio Vorobioff¹³, Edna Solange Dos Santos Traquino¹¹, Prem Harichander Thurairajah⁸, Sanjin Spreckic⁷, Enrique R Arus Soler¹¹, Nadja Sivac⁷, Way Siow⁹, Christoph Scheurich⁴, Federico Sáez-Royuela¹², Agustina Rodil¹³, Daniela Reis¹⁶, Suzane Ono¹², Mariana Nabeshima¹², Mercy Karoney³, Marlen Castellanos Fernández¹¹, Alberto Farias¹², Caridad Ruenes Domech¹¹, Pedro Marques Costa¹⁶, Marina Biryukova⁶, Ahmad Alfadhli¹⁵, Fatma Some³, Johannes Kluwe⁴, Won Kim⁵, Vasily Isakov⁶, Azra Husić-Selimovic⁷, John Hsiang⁸, Jacob George⁹, Mohamed El-Kassas¹⁰, Zaily Dorta¹¹, Flair J. Carrilho¹², Fernando Bessone¹³, Ester Badia Aranda¹⁴, Mohamed Alboraie¹⁵, Helena Cortez-Pinto¹⁶, Ramon Bataller¹

EARLY ALD IS THE MOST OVERLOOKED POHENOTYPOE IN CLINICAL HEPATOLOGY

CAMPAIGNS AIMED AT DETECTING SILENT FORMS OF ALD WITH ADANCED FIBROSIS ARE URGENTLY NEEDED AT A GLOBAL LEVEL

Histological parameters and alcohol abstinence determine long-term prognosis in patients with alcoholic liver disease

Carolin Lackner^{1,*,†}, Walter Spindelboeck^{2,†}, Johannes Haybaeck¹, Philipp Douschan², Florian Rainer², Luigi Terracciano³, Josef Haas⁴, Andrea Berghold⁵, Ramon Bataller⁶, Rudolf E. Stauber²

MANAGEMENT OF MODERATE-SILENT ALD

FIBROSCAN IN PATIENTS WITH ASYMPTOMATIC ALD

PRIMARY CARE CENTERS

ADDICTION CENTERS

Melin et al. Alcohol Addicto 2005 Nahon et al. J Hepatol 2008 N'Guyen-Khac et al. Alimen Pharmacol Therap 2008 Mueller S. W J Gastroenterol 2010

NATURAL HISTORY OF ALD

ALCOHOLIC HEPATITIS

IS THERE ANYTHING NEW IN THE DIAGNOSIS OR MANAGEMENT?

CASE PRESENTATION

Vital signs: BP 90/60 mmHg, HR 105, RR 22, T 37.8°C

Biochemical data at admission:

WBC (10 ⁹ /I)	13.2	Creatinine (mg/dl)	0.8
Hemoglobin (gr/dl)	11.7	Albumin (gr/dl)	2.7
Platelets (10 ⁹ /l)	100	PT /control PT (seg)	45/15
Bilirubin (mg/dl)	24	INR	3.7
AST (UI/I)	159	Na (mEq/l)	134
ALT (UI/I)	74	CRP (mg/L)	46
GGT	653	HBsAg, Anti-HCV Abs, HIV	negative

• Abdominal US: steatosis, signs of cirrhosis, no HCC, no PVT, ascites

ARTERIAL PRESSURE INFLUENCES SURVIVAL IN AH

Mean arterial pressure at admission predicts mortality in patients with alcoholic hepatitis independently of MELD.

Meritxell Ventura-Cots¹, Carlos Fernández-Carrillo¹, JosepMaria Argemi¹, Juan G Abraldes², Francisco Bosques³, Robert S Brown Jr⁴, Guadalupe Garcia-Taso⁵, Juan Genesca⁶, Samuel Ho⁷, Phillipe Mathurin⁸,

Alexander Louvet⁸, Michael Lucey⁹, Debbie Shawcross¹⁰, Victor Vargas ⁶, Elisabeth Verna¹¹, Ramon Bataller¹.

Can we establish a definitive diagnosis of alcoholic hepatitis based on clinical/analytical parameters?

Are there **confounding** factors?

What is the **certainty** of the diagnosis without a liver biopsy?

DIAGNOSIS OF AH

Standard
Definitions and
Common Data
Elements for
Clinical Trials in
Patients With
Alcoholic Hepatitis:
Recommendation
From the NIAAA
Alcoholic Hepatitis
Consortia

How can we assess the severity of the episode and the need for specific therapy?

PROGNOSTIC MODELS FOR ALC HEP

	Model	Bilirubin	PT/IN R	Creatinine	Urea	Age	Leucocytes	
	Maddrey DF*	1	✓					32
[MELD	✓	✓	✓				21
Ī	GAHS*	✓	√		√	√	✓	9
	ABIC*	✓	✓	✓		✓		6.7

Severe vs non-severe

CASE PRESENTATION

- Patient underwent TJB (INR 3.0) at day 2
 - Diagnosis of ASH was confirmed
 - <u>Histological features</u>
 - Fibrosis Stage: F4
 - Moderate PMN infiltration
 - · Megamitochondria neg

Hepatocanalicular/Ductular Bilirubinostasis

AHHS: 7

- Scoring Systems
 - Maddrey's DF: 62
 - MELD: 33
 - GAHS: 9
 - ABIC: 10.2

Severe Episode of Alcoholic Hepatitis

 Prednisolone 40 md/day for 1 week (Lille: no responder). Developed nosocomial infection, MOF and death. He was considered a suboptimal candidate for early liver transplantation.

EARLY LT FOR SEVERE AH

Early Liver Transplantation in Acute Alcoholic Hepatitis

Christine E. Haugen, MD, PhD¹ Andrew M. Cameron, MD, PhD¹

Table 1 Recent studies of early liver transplantation for severe acute alcoholic hepatitis

Study	Mathurin	lm	Lee	ACCELERATE-AH
Transplant recipients, N	26	9	17	147
Center(s)	France, Belgium	Mount Sinai	Johns Hopkins	United States
Study period	2005–2010	2012–2015	2012–2015	2006–2017
Comparison group	Severe AAH, medical treatment	Severe AAH, medical treatment	Alcoholic cirrhosis, LT with ≥6 mo abstinence	-
Age, years ^a	47	41	43	43
Abstinence prior to LT, days ^a	< 90	30	40	55
6-mo survival, %	77	89	100	94 ^b
Any alcohol use post-LT, %	12	22	24	29
Harmful alcohol use post-LT, %	8	11	24	11

Does alcohol relapse influence long-term survival?

How I can help the patient?

Altamirano et al, Hepatology 2017

TREATING AUD IN A PATIENT-CENTERED MANNER

GENETIC-ENVIRONMENTAL FACTORS

Family history
Genetic risk
Other addictions

SOCIAOECONOMIC FACTORS

Isolation
Stigma
Transportation
Insurance

COMMON ASSOCIATED CONDITIONS

PTSD
Sexual abuse
Depression
Anxiety
Sleep
Pain

MULTIDISCIPLINARY ALD CLINIC

- Specialized APP & nurse
- Addiction therapist
- Social worker

Hepatologist

THE BEST OF THE LIVER MEETING® 2019

Alcohol-related Liver Disease

The *Candida albicans* exotoxin Candidalysin promotes alcohol-associated liver disease

Aim:

To evaluate the contribution of *Candida albicans* and its exotoxin Candidalysin on ALD

Methods:

C. albicans and ECE1 were analyzed in fecal samples from 11 non-alcoholic controls, 42 patients with alcohol use disorder (AUD) and 91 alcoholic hepatitis (AH), and mice colonized with different and genetically manipulated C. albicans strains were subjected to the chronic-plusbinge ethanol diet model.

Conclusions:

Candidalysin contributes to progression of ethanol-induced liver disease in preclinical models, and is associated with worse clinical outcomes in patients with alcoholic hepatitis.

Mice colonized with Candidalysin positive C. albicans displayed more severe ethanol-associated liver injury(A), steatosis(B and C) and inflammation(D-F).

Candidalysin was significantly associated with MELD score(G), and an increased 90 day mortality in alcoholic hepatitis patients(H).

Chu HK, et al., Abstract 29

Keratin 18 is a biomarker for the diagnosis and prognosis in acute alcoholic hepatitis

Hypothesis:

K18M65:ALT ratio may assist in distinguishing acute alcoholic hepatitis (AAH) from non-alcoholic steatohepatitis patients (NASH); K18 concentrations are potentially robust biomarkers for predicting mortality in severe AAH.

Methods:

173 participants; 84 AAH patients were classified as severe (n=57, MELD ≥20), or moderate (n=27, 12≤ MELD <19); 38 Alcohol Use Disorder (AUD) patients had mild (n=28, ALT >40) or no liver injury (n=10, ALT ≤40); 34 were NASH patients; and 17 were healthy controls in this single time-point 90-day mortality assessment study.

Main Findings:

ROC curve for K18M65:ALT distinguishes AAH significantly from NASH.

Conclusions:

Keratin 18 appears to reflect the degree of hepatocyte death and liver disease severity better than AST, ALT, or other traditional biomarkers in AAH.

Vatsalya V, et al., Abstract 270