

Acute pancreatitis

Wei Huang MD PhD and Qing Xia MD

Sichuan Provincial Pancreatitis Centre
West China Biobanks
Integrated Traditional Chinese and Western Medicine
West China Hospital of Sichuan University

Management - Practice Guidelines

Author (country)	Journal (year)	Severity prediction (within 48 hrs)	Pancreatic necrosis Fluid therapy		Infected pancreatic necrosis (timing and methods)	Tertiary referral
Chinese Society of Surgery and Association of Integrative Medicine	Chinese Crit Care Med (2007)	APACHE II ≥ 8 Ranson ≥ 3 Balthazar CT score ≥ II	CECT, NA	NA	Time (NA); open mainly	NA
IAP and AGA	Pancreatol (2013)	CECT, 3-4 d, for SIRS predicted severe Optimal cases		> 4 wk; percutaneous drainage > minimally invasive > open; surgery, imaging and endoscopy etc.	Surgery, endoscopy	
ACG	Am J Gastroenterol (2013)	BISAP	BISAP CECT of MRI, 2- Aggressive invasive > open; surgery		> 4 wk; percutaneous drainage > minimally invasive > open; surgery, imaging and endoscopy etc.	NA
Japanese Pancreatic Society	J Hepatobiliary Pancreat Sci (2015)	JSS CECT or MRI, < 1 wk		Aggressive	> 4 wk; percutaneous drainage > minimally invasive > open; surgery, imaging and endoscopy etc.	Severe
Italian Pancreatology Association	Dig and Liver Dis (2016)	NA	CECT or MRI, < 3 d	Aggressive	> 4 wk; percutaneous drainage > minimally invasive > open; surgery, imaging and endoscopy etc.	NA
AGA	Gastroenterol (2018)	NA NA		Goal-directed	NA	NA
National Institute for Health and Care Excellence (NICE)	BMJ (2018)	NA	NA	NA	Endoscopic drainage, if anatomically feasible	Necrotic, infective, haemorrhagic, or systemic complications
World Society of Emergency Surgery (WSES)	World J Emerg Surg (2019)	CRP ≥ 150 mg/l BISAP	CECT 72–96 h, for predicted severe cases	Goal-directed	> 4 wk; percutaneous drainage > minimally invasive > open; surgery, imaging and endoscopy etc.	NA

AGA recommendations

Recommendation	Strength of recommendation	Quality of evidence	
1A. In patients with AP, the AGA suggests using goal-directed therapy for fluid management. Comment: The AGA makes no recommendation whether normal saline or Ringer's lactate is used.	Conditional	Very low	
1B. In patients with AP, the AGA suggests against the use of HES fluids. Conditional Very low.	Conditional	Very low	
2. In patients with predicted severe AP and necrotizing AP, the AGA suggests against the use of prophylactic antibiotics.	Conditional	Low	
3. In patients with acute biliary pancreatitis and no cholangitis, the AGA suggests against the routine use of urgent ERCP.	Conditional	Low	
4. In patients with AP, the AGA recommends early (within 24 h) oral feeding as tolerated, rather than keeping the patient nil per os.	Strong	Moderate	
5. In patients with AP and inability to feed orally, the AGA recommends enteral rather than parenteral nutrition.	Strong	Moderate	
6. In patients with predicted severe or necrotizing pancreatitis requiring enteral tube feeding, the AGA suggest either NG or NJ route.	Conditional	Low	
7. In patients with acute biliary pancreatitis, the AGA recommends cholecystectomy during the initial admission rather than after discharge.	Strong	Moderate	
8. In patients with acute alcoholic pancreatitis, the AGA recommends brief alcohol intervention during admission	Strong	Moderate	

Unmet need in managment

- Pharmacological therapies (for acinar cells?)
- Multiple disciplinary team & hierarchical (multi-level hospitals)
- Disease severity classification and early prediction
- Fluid therapy: Type of fluid? Rate of given? Judge fluid responsiveness?
- Specific and early organ support therapy
- Treatment of aetiology (e.g. biliary, alcohol and genetics) and comorbidities (e.g. diabetes, fatty liver, hypertriglyceridaemia)
- Local complications (timing and methods)

Project 1 – Preclinical validation and RCTs for pathological calcium signalling inhibitors

Project 1 – Research basis

Pathological calcium signalling proposed:

Ward JB et al. Lancet 1995;346:1016-9

· Hypothesis first tested in experimental acute pancreatitis:

Ward JB et al. Gastroenterol 1996;111:481-91

Robert Sutton

Liverpool, UCLA and Chengdu:

- CEL inhibitor, 3-benzyl-6-chloro-2-pyrone (3-BCP)
 Huang W and Booth D et al. Gut 2014;63:1313–1324
- ORAI1 inhibitor, GSK-7975A and CM_128
 Wen L and Voronina S et al. Gastroenterol 2015;149:481-92.e7
- MPTP inhibitor, DEB025 and TR040303

 Mukherjee R and Mareninova OA et al. Gut 2016;65:1333-46
- IP₃R inhibitor, caffeine
 Huang W and Cane M et al. Gut 2017;66:301-313

Other groups:

- SOCE inhibitor pyrtriazoles
 Riva B et al. J Med Chem 2018;61:9756-9783
- **ORAI1 inhibitor, CM4620**Waldron RT et al. J Physiol 2019;597:3085-3105

Project 1 – Proposed work

West China Drug Discovery Chain

Michael Dunn President

Ken Stauderman CSO

Sudarshan Hebbar CMO

Cypralis Pipeline

Target to Lead

Lead Optimisation

Pre-Clinical Dev

Liver Disease (Gilead collaboration)

Acute Tissue Injury

Inflammation 7

Acute Tissue Injury 7

Michael Peel CSO

Cypralis

* cyclophilin subtype selective

Project 2 – Early disease severity predictive biomarker discovery and validation

Project 2 – Research basis 1

Guo et al. Ann Surg 2014;259:1201-7; Shi N et al. Gut 2019 pii: gutjnl-2019-318241

Project 2 – Research basis 2

Project 2 – Proposed work

Project 3 – Early fluid therapy and monitoring fluid responsiveness in acute pancreatitis

Project 3 - basis

Clinical outcomes	Group 1	Group 2	Group 3	Group 4	1 vs. 2	2 3 vs. 4	
	Responsive at 2 h (n = 19)	Refractory at 2 h (n = 4)	Responsive at 6–8 h (n = 14)	Refractory at 6–8 h (n = 9)	P	P	
Persistent organ failure	10	4	6	8	0.127	0.04	
Pancreatic necrosis	7	4	4	7	0.072	0.005	
Necrosectomy	6	0	1	5	0.539	0.018	
Infected pancreatic necrosis	6	0	1	5	0.539	0.018	
Extrapancreatic infections	4	0	1	7	1	0.005	
Need intensive care	10	3	5	8	0.412	0.012	
Length of hospital stay, days, median (IQR) ^a	20 (14–66)	20 (13–24)	18 (11–21)	56 (24–77)	0.654	0.019	
Mortality	4	0	0	4	1	0.014	

Group 1: Reference Group 1: Reference Group 2: 1.5 (0.8, 2.9) Group 2: 1.8 (0.8, 3.8) Group 3: 4.7 (2.9, 7.6) Group 3: 2.0 (1.1, 3.8) 0 POF OR (95% CI) POF OR (95% CI) Group 1: Reference Group 1: Reference Group 2: 1.4 (0.8, 2.4) Group 2: 1.3 (0.7, 2.3) Group 3: 1.8 (1.2, 2.9) Group 3: 1.1 (0.7, 1.8) **Acute Necrotic Collection Acute Necrotic Collection** OR (95% CI) OR (95% CI) Group 1: Reference Group 1: Reference Group 2: 1.5 (0.3, 7.8) Group 2: 1.6 (0.2, 11) Group 3: 6.6 (2.5, 17) Group 3: 2.2 (0.6, 7.2) 10 15 Mortality OR (95% CI) Mortality OR (95% CI) C P<0.001 P<0.001 SAP Percentage of patients MSAP MAP Li L et al. Pancreatol 2019 under review

Group 2

Group 1

Group 3

Baseline Adjusted (P for Trend)

Multivariable Adjusted (P for Trend)

^a Patients died during the first two weeks of admission were excluded from the analysis

P value in bold indicates that there was significant different at level of 0.05 between the designated two groups.

Project 3 - Passive leg raising test

JAMA | The Rational Clinical Examination

Will This Hemodynamically Unstable Patient Respond to a Bolus of Intravenous Fluids?

Measures and Included Studies	No. of Studies	No. of Patients	Cutoff for Measures, Mean (Range) ^b	Sensitivity, % (95% CI)	Specificity, % (95% CI)	Positive LR (95% CI)	I ² ,%	Negative LR (95% CI)	I ² , %	Diagnostic OR (95% CI)
Static Measure										
Central venous pressure ^{44,47,49,71-74}	7	356	8 mm Hg (6-9)	62 (54-69)	76 (60-87)	2.6 (1.4-4.6)	0	0.50 (0.39-0.65)	58	5 (2-11)
Dynamic Measures										
Pulse pressure variation										
Controlled ventilation, V _t ≥7.0 mL/kg ^{36,37,40,66,75-83,92,96,97}	17	768	11 (4-15) ^c	84 (75-90)	84 (77-90)	5.3 (3.5-8.1)	52	0.19 (0.12-0.30)	50	28 (13-57)
Controlled ventilation, V _t <7.0 mL/kg ^{37,84-87}	5	219	8 (5-12) ^c	72 (61-81)	91 (83-95)	7.9 (4.1-16)	22	0.30 (0.21-0.44)	0	26 (11-61)
Stroke volume variation										
Controlled ventilation 34,36,77,78,80,81,88-90	9	343	13 (10-20)	79 (67-87)	84 (74-90)	4.9 (2.8-8.5)	45	0.25 (0.15-0.43)	20	19 (7-53)
Spontaneous breathing ^{48,49}	2	53	10-12 ^d	57-100 ^d	44-57 ^d	1.0-2.3 ^{d,e}		0.05-0.98 ^{d,e}		1-43 ^d
Inferior vena cava variation										
Controlled ventilation ^{28,50,51,90}	4	137	15 (12-21)	77 (44-94)	85 (49-97)	5.3 (1.1-27)	76	0.27 (0.08-0.87)	71	20 (2-222)
Spontaneous breathing ^{52,53}	2	99	40-42 ^d	31-70 ^d	80-97 ^d	3.5-9.3 ^d		0.38-0.71 ^d		9-13 ^d
Response to passive leg raising										
Change in cardiac output ^{24,35,38,39,41,43,45,48,53,60,91-97}	17	788	11 (7-15)	88 (80-93)	92 (89-95)	11 (7.6-17)	60	0.13 (0.07-0.22)	0	88 (39-199)
Change in pulse pressure ^{24,38,41,43,48}	5	278	10 (9-12)	62 (54-70)	83 (76-88)	3.6 (2.5-5.4)	0	0.45 (0.36-0.57)	0	8 (5-14)
Change in cardiac output following passive leg raising										
Controlled ventilation ^{38,41,92,93,96,97}	6	294	10 (7-12)	92 (82-97)	92 (86-96)	11 (6.3-21)	41	0.08 (0.03-0.21)	0	139 (41-474)
Spontaneous breathing ^{35,39,43,53,94}	5	181	12 (10-13)	88 (80-94)	88 (80-94)	7.0 (3.8-13.1)	60	0.22 (0.09-0.54)	0	54 (15-195)

Project 3 – Proposed work

Project 4 – Omics studies with acute pancreatitis

Project 4 – Research resources

Capacity: 10 M

Stored: 2 M

Healthy volunteers: 300,000 with serum, plasma and buffy coat: 800,000

Hepatitis B: 390,000

Western China geriatric cohort: 80,000

Others: 600,000

Sate Key Laboratory of Biotherapy:

Professor of genetics and bioinformatics

Nature, Cell, Science, Nat Genet, Nat Commun, Mol Biol Evo, Genome Biol

Project 4 – Proposed work

Expression

Translation

Function

Transcription

Ritchie MD et al. Nat Rev Genet 2015;16:85-97

Acknowledgments

- West China Pancreas Centre: Professors Qing Xia, Lihui Deng, Weimin Hu, Xubao Liu, Yan Kang, Bin Song, Yu Cao and all multiple-disciplinary members
- State Key Laboratory of Biotherapy of Sichuan University: Professors Lu Chen and Xianghui Fu; colleagues from Nanjing, Nanchang and Shanghai
- International collaborators: Professors Robert Sutton (Liverpool), John A.
 Windsor (Auckland), Vikesh K. Singh (Baltimore), J Enrique Dominguez-Munoz (Santiago de Compostela)
- Invitation from Professor David C. Whitcomb (Pittsburgh) and PancreasFest
- Email address: <u>dr_wei_huang@scu.edn.cn</u>; wetchat: iPancreas

