Multi-organ Failure and Mechanisms of Acute Pancreatitis

David C Whitcomb MD PhD

Giant Eagle Foundation Professor of Cancer Genetics

Prof. Medicine, Cell Biology & Physiology, and Human Genetics

Div. Gastroenterology, Hepatology and Nutrition. University *of* Pittsburgh

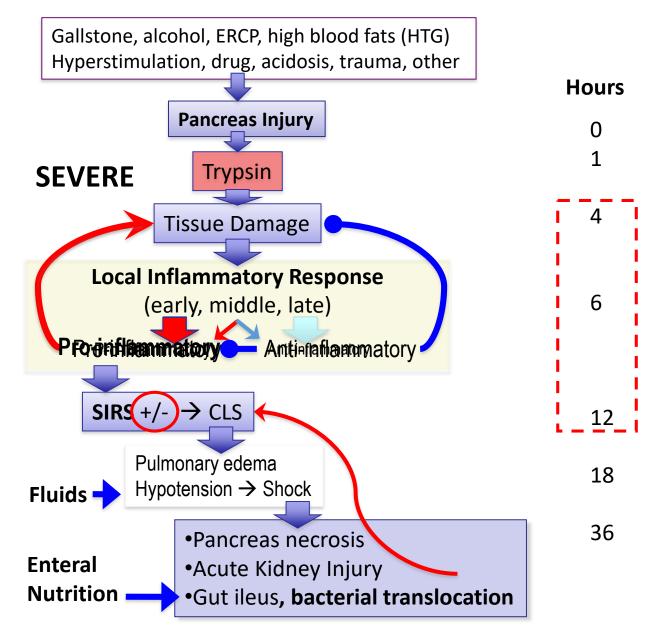
Co-founder and Chief Scientific Officer, Ariel Precision Medicine, Pittsburgh, Pennsylvania

Acute Pancreatitis (AP)

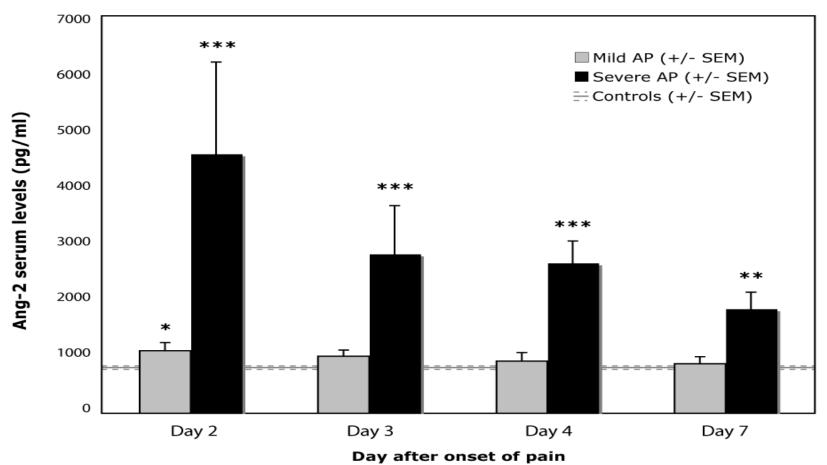
- AP is a sudden acute inflammatory condition of the pancreas
 - Linked to trypsin activation
 - Causes severe abdominal pain (typically with vomiting, but not headache)
 - Elevated serum pancreatic digestive enzyme levels
- In severe acute pancreatitis (SAP), there is up to 20% mortality
- Pathophysiology of SAP poorly understood
 - Systemic inflammation (SIRS) (limited with enteral nutrition)
 - Multi-organ failure (reduced with fluids / lactated Ringer's solution)
- The first 6 hours are critical (the "golden" hour)

Death requires systemic inflammation

- SIRS systemic inflammatory response syndrome ("cytokine storm"):
- 2 or more of the following
 - (1) temperature > 38° C or < 36° C
 - (2) HR > 90 BPM
 - (3) RR > 20 / min
 - (4) WBC > 12,000 or >10% Bands
 - (5) PCO₂ < 32 mmHg.
- SIRS is also seen in Sepsis, Multiple Trauma, Burns (>25%), SARS-CoV-2
- Organ failure requires persistent SIRS
 - Buter et al. Br J Surg. 2002 Mar;89(3):298-302: PMID 11872053

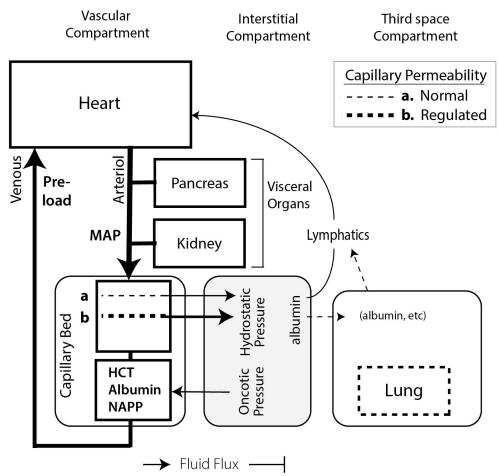

<u>Dynamic Process – 1st 48 hours!</u>

• Sequence


- Injury
- Pro-inflammatory
- Anti-inflammatory
- Resolution

Severity

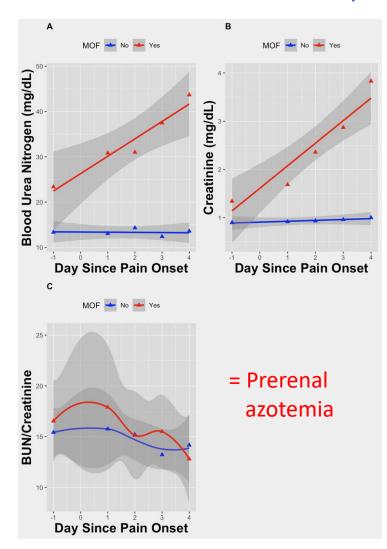
- Major damage to the pancreas
- "Cytokine Storm"
- SIRS (sepsis physiology)
- Capillary leak syndrome (CLS)
- Multi-organ failure (MOF)


Angiopoietin 2 and organ failure

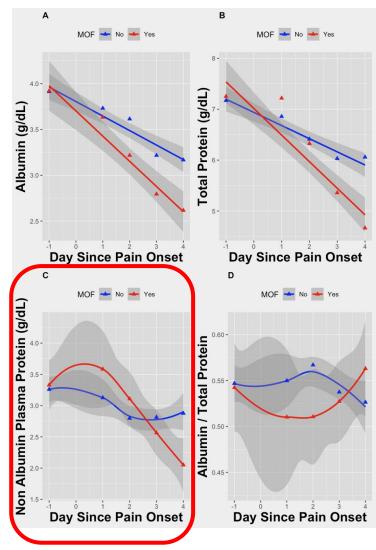
• Levels of Ang-2 were only elevated in patients with capillary leak and organ failure. Day 1 values predicts patient's final outcome

Mechanism of Multi-organ Failure

A. Normal State


Komara NL, et al. Severe acute pancreatitis: Capillary permeability model linking systemic inflammation to multiorgan failure. *Am J Physiol Gastrointest Liver Physiol*. 2020; (in press).

- Lung
- Cardiovascular
- Kidney
- Pancreas


Clinical Study of mild and severe AP patients

- Preadmission and daily hematocrit (HCT), blood urea nitrogen (BUN), creatine (Cr), albumin (Alb), and total protein (TP) were collected, and non-albumin plasma protein (NAPP = TP minus the Alb) was calculated
- Subjects served as their own controls for trajectory analysis.
- Of 57 SAP subjects, 18 developed MOF (5 died), and 39 were non-MOF (0 died).
- Hemoconcentration. Compared with preadmission levels, admission HCT increased in MOF +5.00 [25%-75% interquartile range, IQR] versus non-MOF -0.10 [-1.55, 1.40] (P < 0.002)
- HCT > +3 distinguishing MOF from non-MOF (odds ratio 17.7, P = 0.014).
- HCT in MOF vs non-MOF using population-based cutoff of >40%, >43% men, >36% women, >44% or >47% = **nonsignificant!** (huge variance in baseline HCT)

Biomarkers of MOF: Kidney dysfunction and Capillary leak

BUN and Creatinine

Komara NL, et al. Severe acute pancreatitis: Capillary permeability model linking systemic inflammation to multiorgan failure. *Am J Physiol Gastrointest Liver Physiol*. 2020; (in press).

Albumin, Total Protein and TP minus Alb (NAPP)

Mechanism of Capillary Leak

Hypotheses:

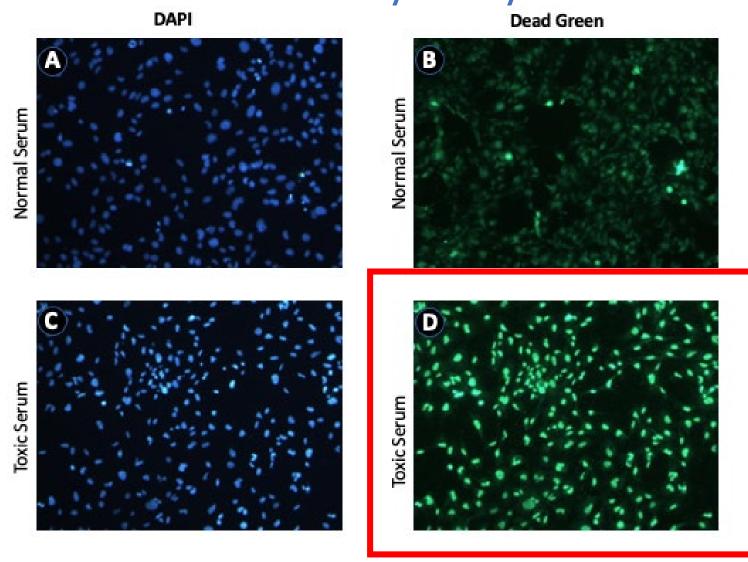
- A. Endothelial Cell Dysfunction
- B. Hydrolysis of plasma proteins by active enzymes

Acute pancreatitis study (DoD)

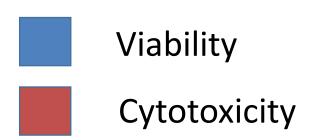
UPMC Study

- Serial blood samples from AP patients classified by Revised Atlanta Criteria (RAC) with or without OF by Modified Marshal Score (MMS) were compared.
- 18 AP subjects (99 samples) were classified as OF (n=7) and non-OF (n=11).
- Cultured human intestinal microvascular endothelial cells (HIMEC) were treated with patient serum.
- Proteolysis was measured by amino acid and metabolite (AA/M) metabolomics.

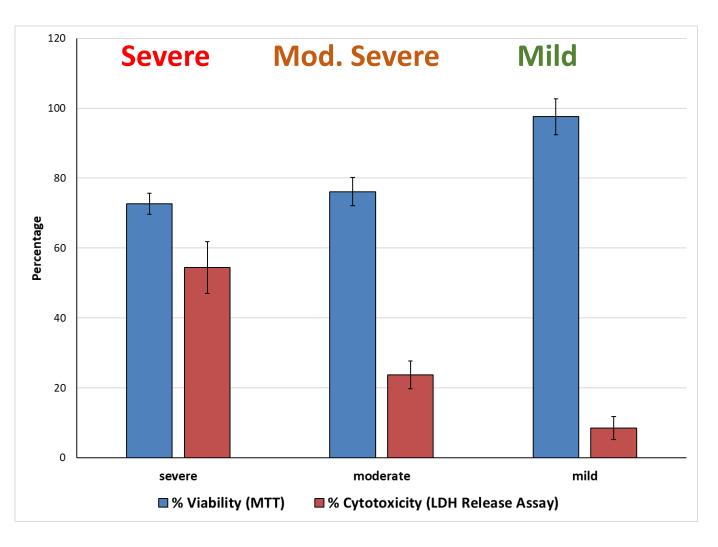
Comparison of AP patients +/- OF


Characteristic	All (n=18)	with OF (n=7)	without OF (n=11)	P-value
Age, years, median (IQR)	48.5(36.75,60.5)	65(42,68)	41(34,52)	0.033
Gender (Male/Female)	11/7	5/2	6/5	0.474
White race, n (%)	15 (83.3)	6 (85.7)	9 (81.8)	0.415
BMI, median (IQR)	32.4(25.05,35.5)	33.3(31.3,35.3)	30.1(24.6,40.9)	0.441
Active smoking, n (%)	5 (27.8)	2 (28.6)	3 (27.3)	0.952
Active alcohol, n (%)	8 (44.4)	3 (42.9)	5 (45.5)	0.914
Charlson, median (IQR)	0.5(0,2.25)	2(1,4)	0(0,1)	0.011
Etiology (1/2/3/3/4/5)	6/2/3/6/1	3/0/2/1/1	3/2/1/4/1	0.513
SIRS, median (IQR)	2.5(2,3)	2(2,4)	3(2,3)	0.703
HCT, %, median (IQR)	45.95(40.95,50.1)	43.7(42.1,49.8)	46(32.9,51.1)	<mark>0.856</mark>
BUN, mg/dl, median (IQR)	16(10.75,25.75)	31(20,37)	12(10,17)	0.013
Creatinine, mg/dl, median (IQR)	1.1(0.7,1.675)	1.6(1.3,2.6)	0.8(0.7,1.3)	0.02
RAC (1/2/3)	4/9/05	0/2/5	4/7/0	0.003
Pancreatic necrosis, n (%)	10 (55.6)	5 (71.4)	5 (45.5)	0.28
ICU admission, n (%)	14 (77.8)	7 (100)	7 (63.6)	0.07
LOS, days, median (IQR)	14.5(7,29.5)	31(17,35)	7(6,15)	0.003
Mortality, n (%)	0 (0)	0 (0)	0 (0)	1

Cultured HIMEC Cells (Endothelial cells)


- Serum samples from admission through up to 7 days was collected under EDRN protocol.
- Human intestinal microvascular endothelial cells (HIMEC) were cultured.
- HIMECs were cultured with serum for 24 hours.
- Endothelial cell stress and viability were measured.

Results: Endothelial DEAD Green Viability assay

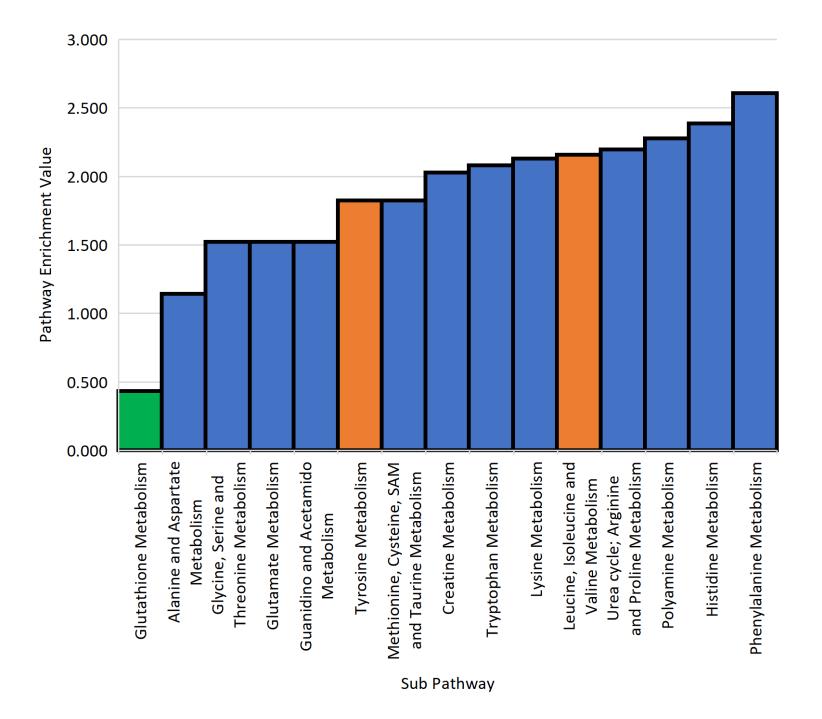

HIMECs
 cultured with
 serum from
 OF patients
 DIED!

Endothelial Cells + patient serum

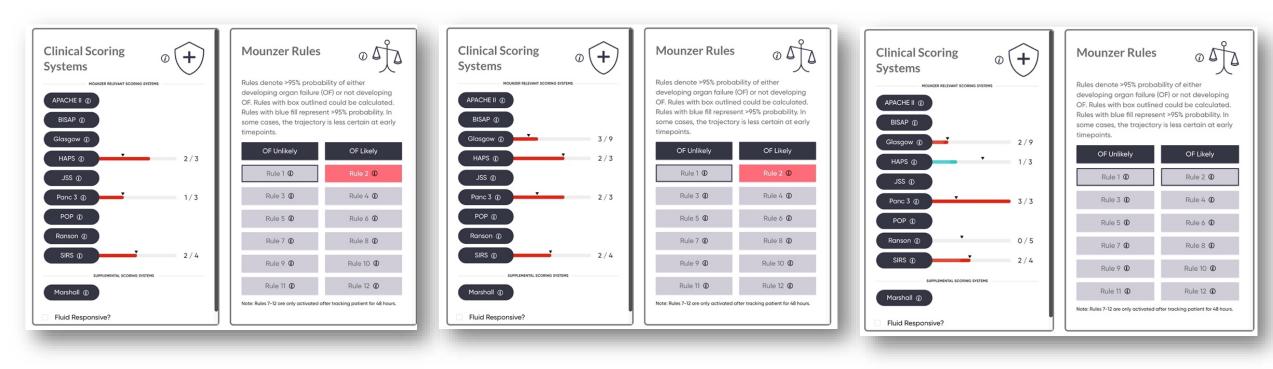
- MTT and Lactate Dehydrogenase (LDH) Release Cellular Viability Assays.
- serum from patients with mild, moderate and severe acute pancreatitis for 24 hours.

Metabolomics*

- 187 ammino acids and AA metabolites AA/M analytes identified
- 120 significantly changed in concentration in OF (p≤0.05, ANOVA).
- Increases were associated with OF (115 increased versus 5 decreased; p<2.2e⁻¹⁶)
- 15 of 16 AA metabolic pathways involved
- Results: non-specific, unregulated proteolysis.


^{*}Metabolon, Inc., Morrisville, NC, USA.

AA Pathways


Ratio of AA/M levels in organ failure (OF) versus no organ failure (no-OF) based on amino acid sub pathway.

Green - The marked reduction is the glutathione metabolism pathway indicates consumption of detoxification compounds in phase II metabolism.

Orange – Key pathologic pathways in catecholamines and BCAAs.

3 patients with RAC mild/moderate AP -> Toxic serum

- Three patients initially classified by RAC with mild or moderate-severe diseases progressed to more severe AP. Patients 1 and 2 had prolonged ICU courses, with patient 3 in the ICU for 7 days for HTG-AP.
- The ADAPT severity calculator was accurate during the first 12-24 yours of admission.
- RAC classification is *post hoc*, and may misclassify patients early in the course of disease.

Summary / Conclusions

- Serum from AP subjects with OF is toxic to endothelial cells causing CLS
- High AA/M levels indicate unregulated proteolysis in OF patients
- Both CLS and Proteolysis may contribute to loss of plasma albumin and total protein.
- RAC is inaccurate in early classification of AP patients with toxic serum and emerging OF.

Questions?

whitcomb@pancreas.org