

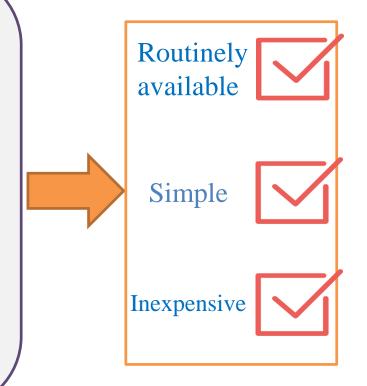
Predictive Tools and Biomarkers for Severe Acute Pancreatitis a 20-year journey

George Papachristou, MD PhD
Professor and Division Chief
Gastroenterology, Hepatology and Nutrition

Acute Pancreatitis

#1 Development of an accurate early risk stratification tool

#2 Execution of multi-center drug trials in AP


A prediction tool that is accurate, inexpensive and widely available in EARLY AP patients

Facilitate clinical trials

Predictive Tools Derived from Routine Clinical and Laboratory Parameters

BUN, Hematocrit, Creatinine

BISAP, Ranson's, APACHE-II, SIRS

Peak Cr predicts Pancreatic Necrosis

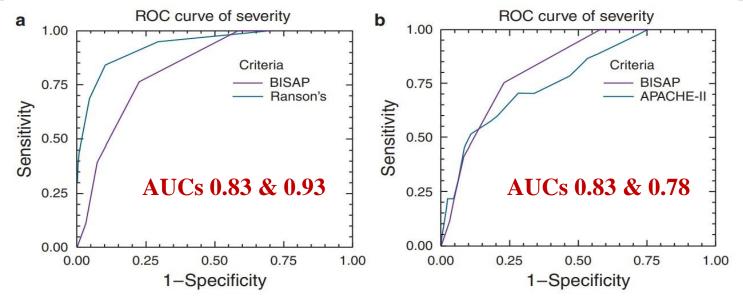
	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)		
Admission Hct	70.6% (53.8–83.2)	83.7 (74.8–89.9)	61.5 (45.9–75.1)	88.5 (80.1–93.6)		
48-h peak Cr	41.2 (26.4–57.8)	98.9 (94.2–99.8)	93.3 (70.2–98.8)	82.1 (74.0-88.1)		
CI, confidence interval; Cr, creatinine; Hct, hematocrit; NPV, negative predictive value; PPV, positive predictive value.						
Bold values are most clinically important values.						

Prospective, single center study of 129 subjects

BUN predicts Mortality

Cohort	BUN	Creatinine	APACHE II
BWH	0.84 (0.70-0.94)	0.86 (0.78-0.94)	0.89 (0.81-0.98)
DPSG	0.82 (0.74-0.90)	0.74 (0.63-0.84)	0.72 (0.63-0.82)
UPMC	0.91 (0.83-0.99)	0.96 (0.94-0.99)	0.92 (0.85-0.98)
Overall	0.84 (0.79-0.90)	0.79 (0.72-0.86)	0.80 (0.74-0.87)

Prospective, multicenter study of 1,043 subjects


Admission Hct & BUN Rise at 24 h

	Sensitivity	Specificity	PPV	NPV	AUC	Complete data*
Admission BUN ≥20 mg/dl	54.55 (47.53-61.43)	75.44 (72.41-78.29)	35.19 (29.99-40.66)	87.16 (84.54-89.49)	0.65 (0.61-0.69)	77%
Admission hematocrit ≥44%	59.16 (51.83-66.20)	74.24 (70.98-77.32)	36.57 (31.19-42.21)	87.87 (85.09-90.29	0.67 (0.63-0.71)	69%
Admission creatinine ≥1.8mg/dl	24.88 (19.23-31.25)	93.37 (91.51-94.93)	47.75 (38.18-57.44)	83.62 (81.15-85.89)	0.59 (0.56-0.62)	79%
Admission APACHE-II ≥8	68.42 (61.96-74.40)	64.50 (61.57-67.36)	28.94 (25.15-32.97)	90.63 (88.34-92.59)	0.66 (0.63-0.70)	95%
Rise in BUN at 24 h	62.68 (55.74-69.25)	78.71 (75.81-81.41)	41.85 (36.33-47.53)	89.61 (87.21-91.70)	0.71 (0.67-0.74)	77%
Rise in hematocrit at 24h	29.84 (23.45-36.87)	84.49 (81,72-86.99)	32.57 (25.69-40.05)	82.75 (79.91-85.35)	0.57 (0.54-0.61)	69%
Rise in creatinine at 24 h	50,23 (43,32-57,14)	81.14 (78.39-83.68)	39.34 (33.49-45.42)	87.01 (84.51-89.24)	0.66 (0.62-0.69)	79%

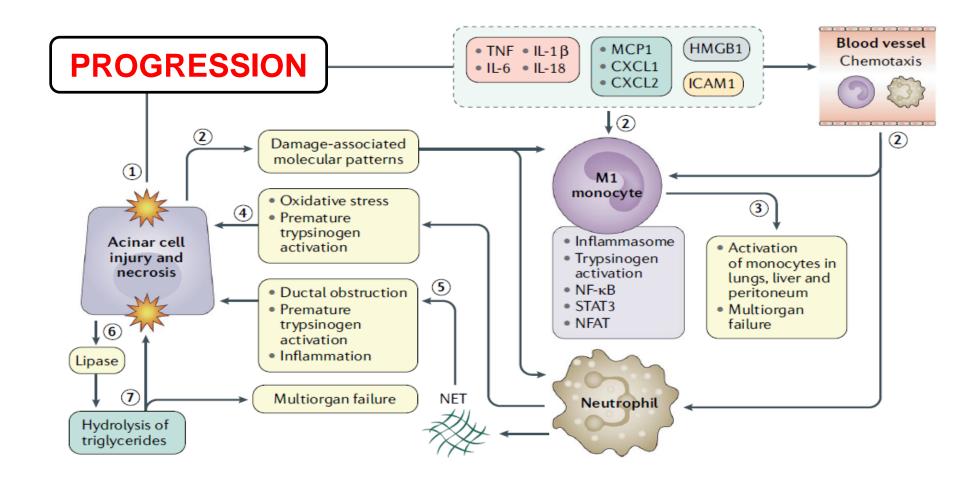
Prospective, multicenter study of 1,612 subjects

BISAP, Ranson's, APPACHE-II and CTSI

AUC (95% CI)	Severity	PNec	Mortality
BISAP	0.81 (0.74–0.87)	0.78 (0.69–0.85)	0.82 (0.67-0.91)
Ranson's	0.94 (0.89-0.97)	0.85 (0.79-0.90)	0.95 (0.90-0.98)
APACHE-II	0.78 (0.71 – 0.84)	0.72 (0.64–0.78)	0.94 (0.89-0.97)
CTSI	0.84 (0.76-0.89)	0.98 (0.94-1.00)	0.83 (0.75-0.89)

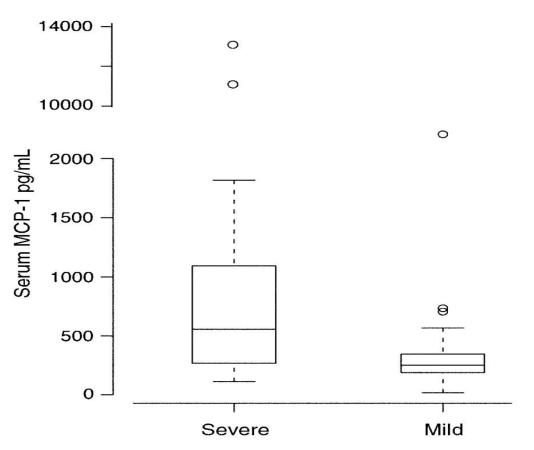
Prospective, single center study of 185 subjects

Papachristou GI, et al. Am J Gastroenterol 2010

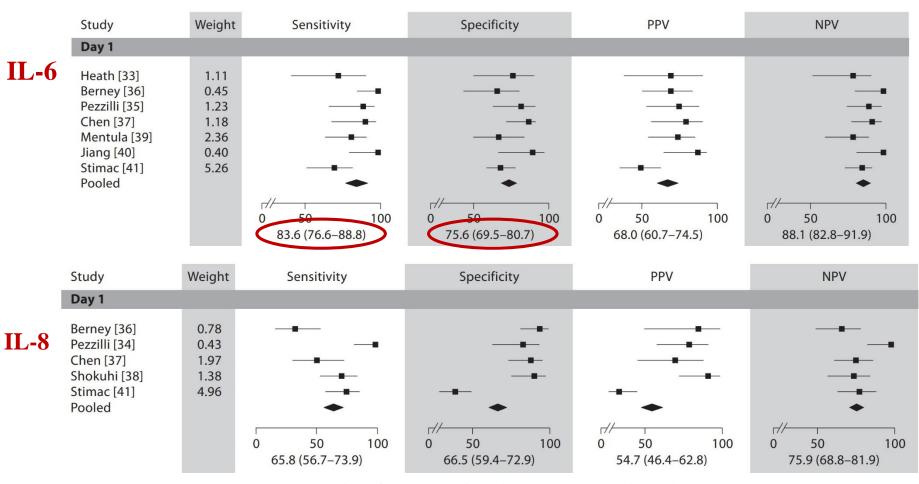

Head-to-Head Score Comparison

Score	Cut-off	Sensitivity	Specificity	PPV	NPV	AUC	Complete data ^a
APACHE-II	7	0.84 (±0.11)	0.71 (±0.06)	0.49 (±0.11)	0.93 (±0.08)	0.77 (±0.07)	96%
BISAP	2	$0.61(\pm 0.20)$	$0.84(\pm0.04)$	$0.54(\pm 0.10)$	$0.87(\pm 0.10)$	$0.72(\pm0.10)$	100%
Glasgow	2	$0.85(\pm0.08)$	$0.83(\pm 0.07)$	$0.61(\pm 0.06)$	$0.95(\pm 0.05)$	$0.84(\pm0.06)$	98%
HAPS	1	$0.70(\pm 0.11)$	$0.53(\pm0.21)$	$0.32(\pm0.11)$	$0.85(\pm 0.13)$	$0.62(\pm0.06)$	99%
JSS	2	$0.59(\pm 0.13)$	$0.92(\pm 0.05)$	$0.70(\pm 0.16)$	$0.88(\pm 0.07)$	$0.76(\pm 0.07)$	95%
Panc 3	1	$0.76 (\pm 0.15)$	$0.52(\pm0.05)$	$0.34(\pm0.11)$	$0.87(\pm 0.11)$	$0.64(\pm0.06)$	99%
POP	9	0.57 (±0.15)	$0.76(\pm0.06)$	$0.43(\pm 0.16)$	$0.85(\pm0.08)$	$0.67(\pm0.09)$	99%
Ranson	2	$0.66(\pm0.09)$	$0.78(\pm 0.10)$	$0.49(\pm 0.17)$	$0.88(\pm0.08)$	$0.72(\pm0.06)$	98%
SIRS	2	$0.70 (\pm 0.18)$	$0.71(\pm 0.04)$	$0.43(\pm 0.10)$	$0.88(\pm 0.11)$	$0.70(\pm0.10)$	98%
BUN	23	$0.56(\pm 0.10)$	$0.86(\pm 0.05)$	$0.57(\pm0.14)$	$0.86(\pm 0.05)$	$0.71(\pm 0.03)$	98%
Creatinine	1	$0.77(\pm0.09)$	$0.59(\pm0.04)$	$0.38(\pm0.08)$	$0.89(\pm 0.04)$	$0.68(\pm 0.06)$	98%
Validation coho	rt						
APACHE-II	7	0.97 (±0.08)	$0.44(\pm0.06)$	$0.14(\pm0.04)$	$0.99(\pm 0.02)$	$0.71(\pm 0.05)$	100%
BISAP	2	$0.62(\pm0.20)$	$0.76(\pm0.04)$	$0.20(\pm0.06)$	$0.96(\pm0.04)$	0.69(+0.11)	100%
Glasgow	2	$0.65(\pm0.24)$	$0.82(\pm 0.05)$	$0.22(\pm0.08)$	$0.97(\pm 0.02)$	0.74 (±0.10)	91%
HAPS	1	$0.73(\pm0.26)$	$0.58(\pm0.09)$	$0.12(\pm0.06)$	0.97 (±0.02)	0.66 (±0.09)	92%
JSS	2	0.42 (±0.19)	$0.89(\pm 0.05)$	$0.23(\pm0.18)$	$0.95(\pm 0.01)$	$0.66(\pm 0.11)$	91%
Panc 3	1	$0.62(\pm 0.31)$	$0.52(\pm0.05)$	$0.11(\pm 0.05)$	$0.94(\pm 0.04)$	$0.57(\pm 0.16)$	100%
POP	9	$0.46 (\pm 0.31)$	$0.81(\pm0.04)$	$0.16(\pm 0.12)$	$0.95(\pm 0.02)$	$0.64(\pm 0.16)$	90%
Ranson	2	$0.46 (\pm 0.28)$	$0.80(\pm0.03)$	$0.16(\pm 0.11)$	$0.95(\pm 0.02)$	$0.63(\pm 0.15)$	91%
SIRS	2	$0.69(\pm 0.16)$	$0.58(\pm0.04)$	$0.11(\pm 0.03)$	$0.96(\pm0.03)$	$0.64(\pm 0.01)$	93%
BUN	23	0.65 (±0.26)	$0.81(\pm 0.04)$	$0.21(\pm 0.09)$	0.97 (±0.03)	$0.73(\pm 0.13)$	96%
Creatinine	1	0.77 (±0.20)	0.63 (±0.07)	0.14 (±0.12)	0.97 (±0.02)	$0.70(\pm 0.11)$	98%

Prospective, dual center study: Training of 256; Validation Cohort 397 subjects

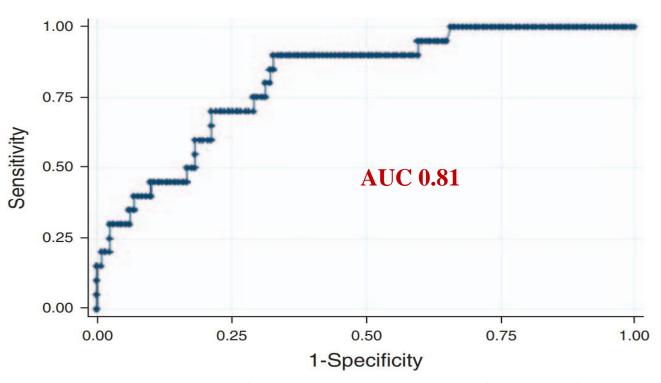

Laboratory Tests and Clinical Scores have reached their maximal efficacy in predicting clinical AP outcomes (Necrosis, POF, Death) with only a modest accuracy of <80%

Cytokines

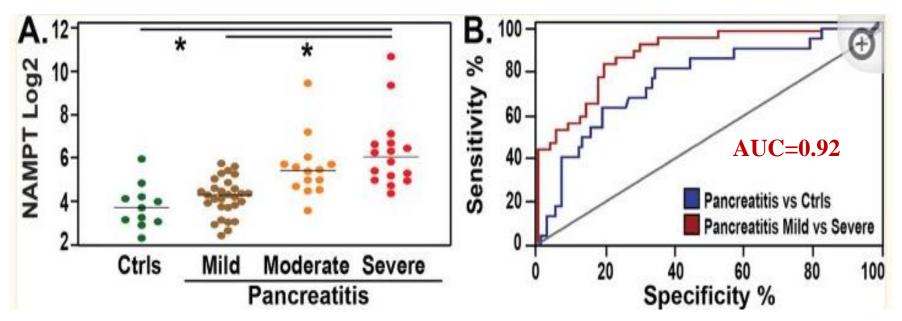

Lee PJ, Papachristou GI. Nat Rev Gastroenterol 2020

Monocyte Chemotactic Protein-1 (MCP-1)

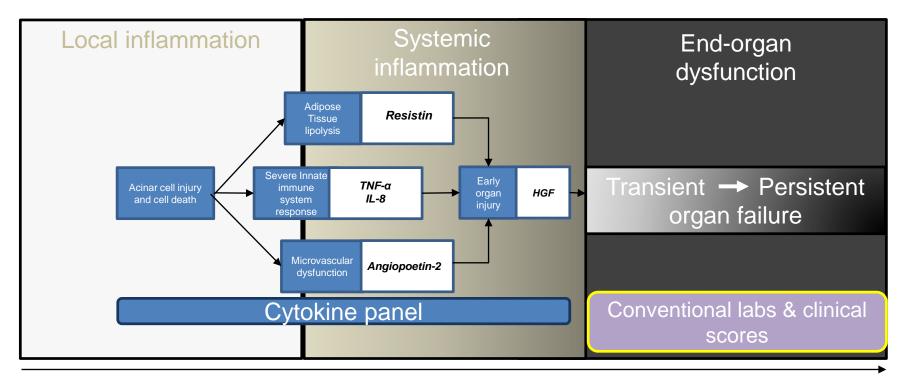
Prospective single center study of 77 subjects


IL-6 and IL-8

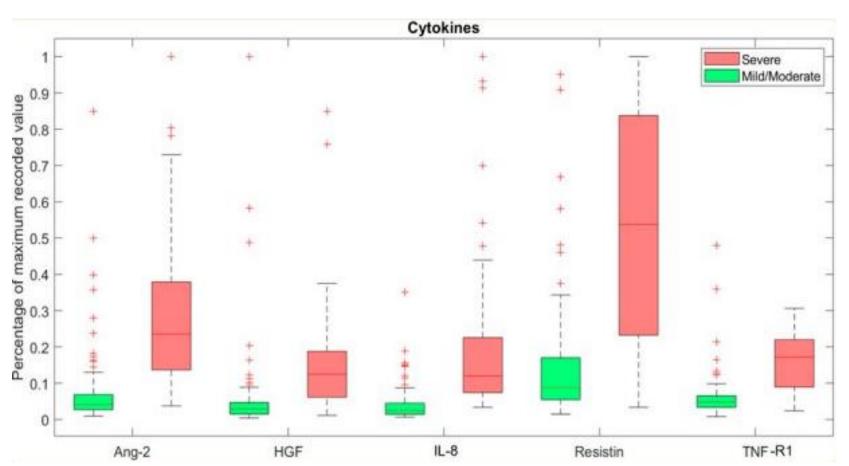
Meta-analysis of 10 studies (150-385 subjects)


Aoun E, ..., Papachristou GI. Pancreatology 2009

Angiopoietin-2


Prospective, dual center study of 151 subjects

Nicotinamide Phosphoribosyl-Transferase (eNAMPT)


Prospective multicenter study of 671 subjects: Trauma, Sepsis, ARDS, and AP

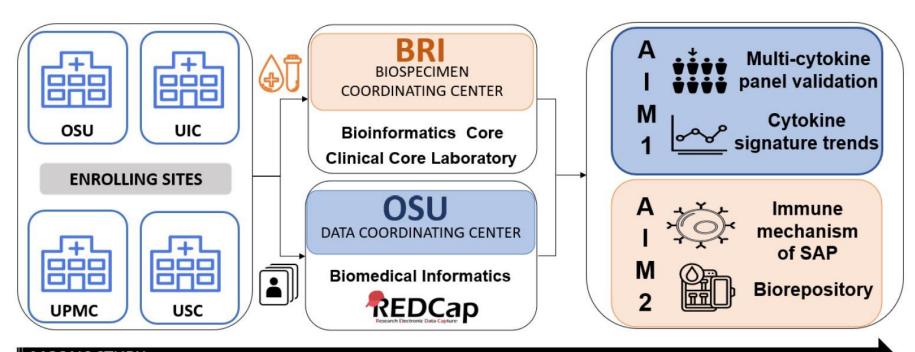
Combining Cytokines


Time elapsed since onset of disease

5-cytokine panel

Prospective, single center study: Derivation of 60; Validation Cohort 133 subjects Supported by a VA Merit Review Award

5-cytokine panel



Lee PJ, ..., Papachristou GI. Clin Transl Gastroenterol 2020

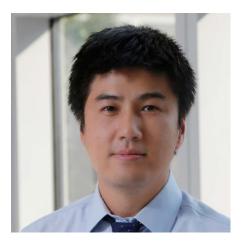
MOSAIC Proposal

- Aim 1: Validate the novel multi-cytokine panel for early prediction of SAP
- Methods: Enrollment within 36 hrs of AP presentation
 Cytokines measurement using Olink, a well-established multiplex platform
- **Aim 1.1**: Validate multi-cytokine panel accuracy and compare it to existing prediction tools (BUN, SIRS)
- **Aim 1.2**: Correlate cytokine trends over time with clinically relevant AP outcomes (OF, LOS) in samples collected over course of AP hospitalization
- Expected Outcome: For the first time, the scientific community will have a highly accurate SAP predictive tool available for research purposes
- <u>Future Directions</u>: Development of a **point-of-care test** based on the multi-cytokine panel for real-time use at bedside

MOSAIC Study Network

MOSAIC STUDY

MOSAIC


- Sample Size n=198
- Duration 5 years
- Part of the NIDDK T1DAP Consortium
- Collaborators
 - Cate Speake, Adam Lacy-Hulbert (BRI)
 - Peter Lee, Darwin Conwell (OSU)
 - Anna Evans (UPMC)
 - Cemal Yazici (UIC)
 - James Buxbaum (USC)
- Submitted in February 2022; scored in 10th percentile

Thank you

