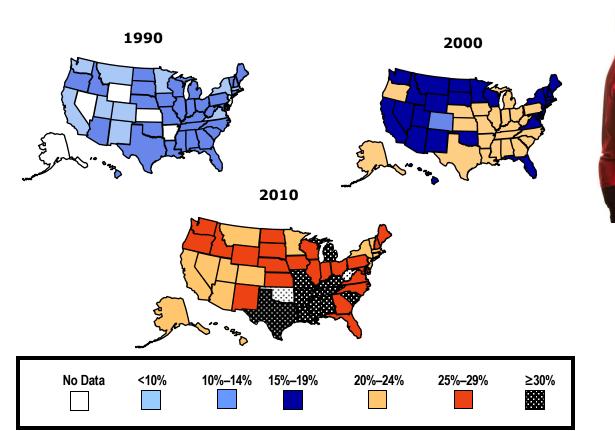
Nutrition & Wound Healing: Practical Steps for Successful Assessment & Treatment

David G. Binion, MD
Professor of Medicine, Clinical and Translational Science
Co-Director, IBD Center
Director of Translational IBD Research
Director, Nutrition Support Service
Medical Director, Intestinal Rehabilitation and Transplant Center
UPMC Presbyterian Hospital
University of Pittsburgh School of Medicine
Pittsburgh, PA, USA

binion@pitt.edu

Outline: Nutrition and Wound Healing

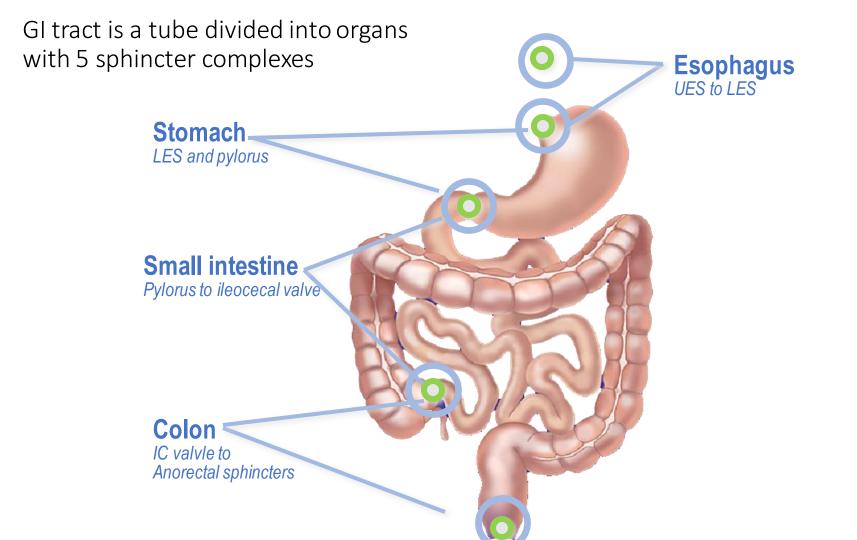

- 1. Changing spectrum of nutrition and malnutrition
- 2. Anatomy and nutritive physiology of the GI tract; Fluid shifts, digestion
- 3. Nutrition assessment and identification of malnutrition
- 3. Nutrition when the gut is available:

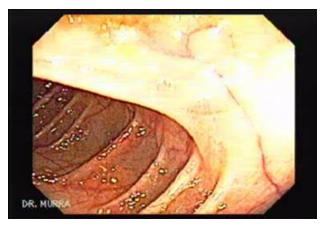
 Enteral nutrition support; POLYMERIC vs. ELEMENTAL feeding
- 4. Nutrition support when the gut is no longer available: Parenteral nutrition: Central venous access, TPN
- 5. Special considerations

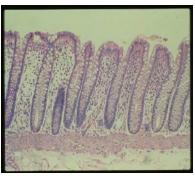
Obesity Trends* Among U.S. Adults

BRFSS, 1990, 2000, 2010

(*BMI ≥30, or about 30 lbs. overweight for 5'4" person)


Paradox of Obesity and Malnutrition:




All of these individuals are at risk for malnutrition and poor medical/surgical outcomes

The GI Tract Not just a tube!

Normal GI mucosa

Surface area with external environment

As many nerves as the spinal cord

Largest immune organ in body

Physiologic inflammation

Oral tolerance

"You are only 10% human"

Dominant Gastrointestinal Bacteria in Normal Humans

Enteric bacteria – trigger for Inflammation and malnutrition

Duodenum 10²

Streptococcus Lactobacillus

Jejunum 10²

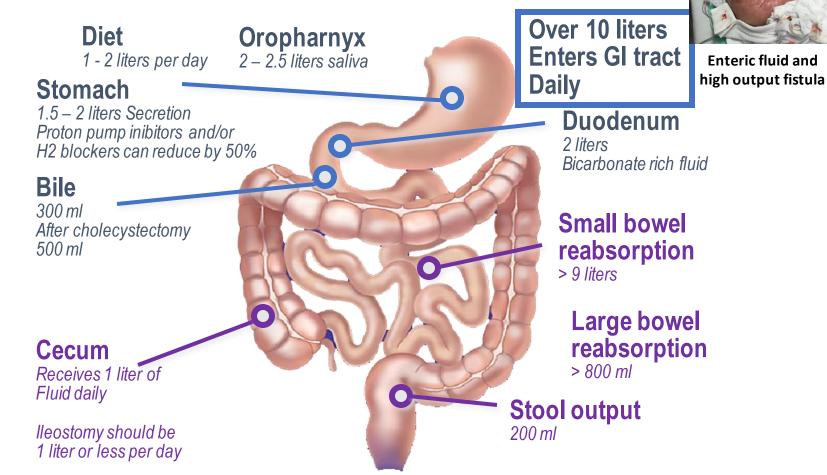
Streptococcus Lactobacillus

Stomach 0-10²

Lactobacillus
Candida
Streptococcus
Helicobacter pylori
Peptostreptococcus

Distal Ileum 10⁷-10⁸

Clostridium Bacteroides sp Coliforms


Colon 10¹¹

Bacteroides
Bifidobacterium
Clostridium coccoides
Clostridium lepium/fusobacterium

Proximal Ileum 10³

Streptococcus Lactobacillus

Fluid Shifts in the Gastrointestinal Tract: *Proximal Secretion, Distal Reabsorption*

Digestion occurs in the duodenum with pancreatic enzymes and bile

Bile contributes to impaired wound healing and fistulae

Stomach

Storage of food in the body Antrum – grinding of food into 1-2 mm particles

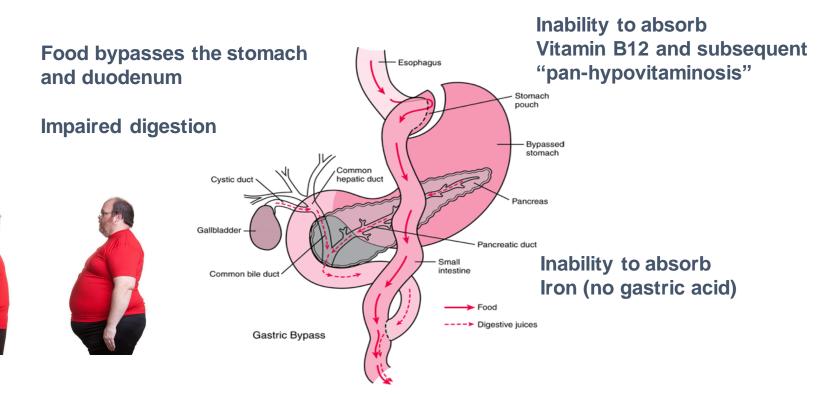
Distal Ileum

Absorption of bile, fat, Vitamin B12, Fat soluble vitamins (Vit A, D, E, K)

Colon

Fluid absorption

Duodenum


Digestion with enzymes and bile
Absorption of iron

Jejunum + Ileum

Absorption of 90% of fluids, nutrition

If digestion is impaired, food becomes an osmotic laxative

Roux-en-Y Gastric Bypass: Deliberately Causing Malnutrition to Achieve Weight Loss

Malnutrition

 Includes extremes of *Underweight* (PEM) and *Overweight* (Obesity)

- Frequent component of acute and chronic illness
- Affects > 50% of hospitalized patients
- Contributes to increased morbidity and mortality
- Nutrition assessment by a dietician within 24-48 hours of admission is a Quality Metric

- Unintentional weight loss of > 10% UBW within
- preceding 3 months
- Body weight < 90% of ideal (IBW) for height
- Body mass index (BMI) < 18.5

BMI = Weight (kilograms) divided by Height (square meters)

Table 3. Prevalence of Malnutrition.

Types of Patients in the Intensive Care Unit	Prevalence of Malnutrition
Heterogeneous group ^{8,20,21,23,26-32}	37.8%-78.1%
Elderly ³⁴	23.2%-34.4%
Cardiac surgery ²²	5.0%-20.0%
Liver transplantation ^{26,27}	52.6%
Acute kidney injury ³⁹	82.0%

Body Weight - Associated Disease Risk: "U Curve" with Increased Risk at BMI Extremes

	Weight Class	BMI (kg/m²	<u>Risk</u>
•	Extreme underweight	≤ 14.0	Extremely High
	Underweight	14.1 - 18.4	Increased
	Normal	18.5 - 24.9	Normal
	Overweight	25.0 - 29.9	Increased?
	Obesity		
	1	30.0 - 34.9	High
		35.0 - 39.9	Very high
		≥ 40.0	Extremely high
₹			

Decrease energy expenditure Increase use of adipose tissue triglycerides (TGs) as fuel Decrease brain glucose requirements Maintain glucose delivery to glucose-requiring tissues Conserve body nitrogen

Organ Function Changes in Starvation: Physiologic "hibernation"

```
General: \downarrow R.E.E., \downarrow physical activity, \downarrow body te T<sup>o</sup>
Cardiovascular \rightarrow: \downarrow C.O., \downarrow BP, \downarrow HR
               Renal: \downarrow U.O., \downarrow GFR, \downarrow response to ADH
               Pulmonary: \downarrow ventilation, \uparrow infections,
Gastrointestinal \rightarrow: \downarrow villus height, \downarrow lactase
                Immune: \downarrow DCH (anergy), \uparrow predisposition to infection
               Body Composition: \uparrow Na<sup>+</sup>, H<sub>2</sub>0 retention
                                                         \uparrow EC H<sub>2</sub>0, \downarrow IC H<sub>2</sub>0
                                                         \downarrow K+, \downarrow Mg<sup>++</sup>
                                                         ↓ body fat, ↑ fatty liver
```

Nutrition Assessment – The "A,B,C,D's"

- Determine who is at nutritional risk
- Provide a means to monitor effectiveness of nutritional support

- ANTHROPOMETRIC measurement of body composition
- BIOCHEMICAL measurement of serum protein, micronutrients, metabolic parameters
- CLINICAL assessment of altered nutritional requirements and social psychological issues affecting intake
- DIETARY intake measurement

Clinical manifestations vary widely and depend on:

- Age of patient
- Degree of energy deficit or energy level
- Length and duration of deficiency
- Metabolic stress
- Psychosocial stress

Objective markers of nutritional assessment:

Clinical markers of nutritional assessment

- Percent ideal body weight (IBW)
- Hand grip strength
- Percent usual body weight (UBW)
- Mid-arm muscle circumference
- Serum albumin

Nutrition History

- Usual BW (UBW) vs. ideal BW (IBW)
- Actual BW (ABW)
- Percent UBW (% UBW) or deviation from UBW (*most sensitive marker of recent weight loss)

Anthropometric Measurements

- Estimate body composition or body energy stores
- Triceps skin fold (TSF)
 measures body fat stores
- Mid-arm muscle circumference (MAC, MAMC) measures body protein stores

Biochemical Measurements

<u>Serum</u>		<u>Urine</u>	
•	Albumin	3-Methylhistidine	
•	Prealbumin	Creatinine	
•	Transferrin		

Subjective Global Assessment of Nutrition Status (SGA) Features

- History
- Weight Change
- Dietary Change
- GI Symptoms
- Functional Capacity
- Physical
- Subcutaneous Fat Loss
- Muscle Wasting
- Edema / Ascites

SGA Rating

___Well nourished

____Moderately malnourished

___Severely malnourished

Global Leadership Initiative on Malnutrition (GLIM) Criteria for the Diagnosis of Malnutrition

Phenotypic Criteria

- •Weight loss (%): >5% within past 6 months, or >10% beyond 6 months
- •Low body mass index (kg/m2): <20 if <70 years, or <22 if >70 years. Asia: <18.5 if <70 years, or <20 if >70 years
- •Reduced muscle mass^a: Reduced by validated body composition measuring techniques

Etiologic Criteria

- •Reduced food intake or assimilation^{b,c}: ≤50% of ER > 1 week, or any reduction for >2 weeks, or any chronic GI condition that adversely impacts food assimilation or absorption
- •Inflammation^{d,e,f}: Acute disease/injury or chronic disease-related

Diagnosis of malnutrition: Requires at least 1 phenotypic criterion and 1 etiologic criterion.

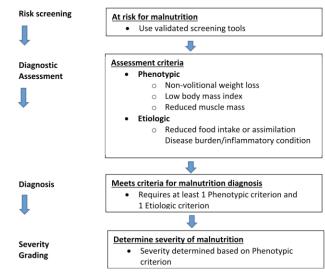
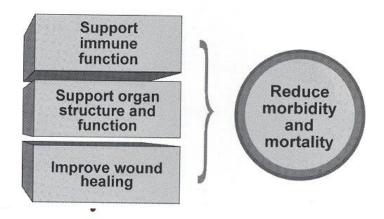
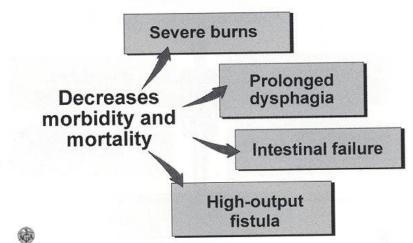


Fig. 1. GLIM diagnostic scheme for screening, assessment, diagnosis and grading of malnutrition.


Abbreviations: GI, gastro-intestinal, ER, energy requirements.

The Inpatient Dietician Clinical Nutrition Evaluation


TABLE 85.3 COMPONENTS OF A CLINICAL NUTRITION EVALUATION


Review and evaluate anthropometric measurements
Review and evaluate biochemical measures
Obtain and evaluate diet history and/or 24-h diet recall and/
or food frequency questionnaire
Conduct nutrition-focused physical examination
Calculate energy, protein (and other macronutrients
for patients receiving parenteral nutrition), fluid, and
micronutrient requirements
Determine optimal route for nutrition support (i.e., oral,
enteral, or parenteral)
Develop implementation and monitoring plan

Nutrition Support Goals

Specialized Nutrition Support

TABLE 85.1 INDICATIONS FOR PARENTERAL NUTRITION

Inability to use GI tract for >7-10 d (3-5 d in the ICU) Diffuse peritonitis

Enterocutaneous fistula where enteral feeding is not possible GI ischemia

Intestinal obstruction

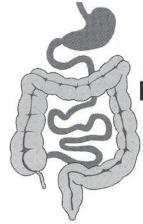
Intractable vomiting

Intractable diarrhea

Intestinal failure

Prolonged ileus

Severe exacerbation of inflammatory bowel disease


Severe GI bleeding

Severe pancreatitis after failed EN trial

Severe malabsorption with intolerance to EN or failed EN trial Severe malnutrition with inability to use EN

severe mainutrition with inability to use EN

EN, enteral nutrition; GI, gastrointestinal; ICU, intensive care unit.

If the gut works ...

TABLE 85.2 INDICATIONS FOR ENTERAL NUTRITION

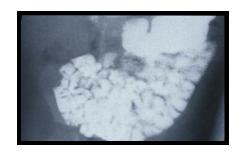
Inadequate oral intake for >7–10 d (3–5 d in the ICU) with functional gastrointestinal tract

Enterocutaneous fistula (if feeding tube can be inserted distal to the fistula)

Head or neck cancer

Inadequate oral intake to meet a high metabolic demand (e.g., trauma or burn patient)

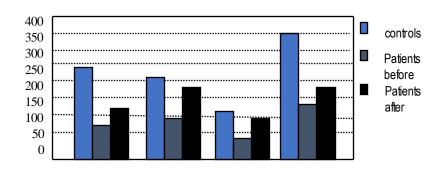
Significant malnutrition with inadequate oral intake for repletion


Stroke or other neurologic compromise with significant dysphagia

Swallowing disorders

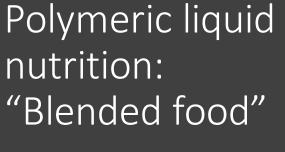
ICU, intensive care unit.

GI Tract: Marasmic Kwashiorkor


Bowel wall edema (anasarca)

Impaired motility (gastroparesis)

Impaired nutritive function


Marasmic Kwashiorkor 1 month post treatment

Malnutrition impairs digestive enzyme production: Challenge for malnourished gut to process food

Better palatability, but requires intact pancreatic function to digest prior to

Better tolerated by healthy mucosa

absorbing nutrition

Many can be taken orally, as well as via tube delivery

Elemental liquid nutrition: "Predigested"

Compensates for decreased pancreatic function, compromised mucosal function (bowel anasarca).

Often requires placement of a tube, due to palatability

Newer products can be taken orally

Clinical Indications for PN

- Small bowel resection (Short Bowel Syndrome)
- Intestinal Pseudoobstruction (Systemic Sclerosis)
- Enteric Malabsorption (acute/chronic radiation damage)
- Enterocutaneous fistula (small bowel to skin)
- Intestinal Obstruction
- Inability to place enteral access devices
- Enteral Nutrition has failed to nourish patient
- Others. . .

Recommended Daily Protein Intake in Hospitalized Patients

Clinical State	Protein Requirements (g/kg IBW/d)	
Normal	0.8	
Metabolic stress	1.0-1.5	
Acute renal failure	0.8-1.0	
Hemodialysis	1.2-1.4	
Peritoneal dialysis	1.3-1.5	
Burn patients	1.5 – 2.0	
Enterocutaneous fistula	1.5 – 2.5	

TABLE 15.5. Stepwise approach to writing a parenteral nutrition order

Patient: A 70 kg man, moderate physiologic stress

Caloric Contents of Nutrient Substances

Protein 4 kcal/g

Fat 10 kcal/g

Carbohydrates 3.4 kcal/g

Estimated Needs for This Patient

30 kcal/kg = 2100 kcalCalories

Fluids

Protein 1.2 g/kg = 84 g

30 cc/kg = 2100 cc

Step 1—Add Protein to the PN mixture

84 g of protein needed

Each gram of protein is 4 calories (Total 326 kcal)

2100 kcal - 326 kcal = 1774 kcal still required

Step 2—Add Lipids (1.0 g/kg/day)

70 g fat = 700 kcal

1774 residual calories – 700 kcal = 1074 calories

Step 3—Add Carbohydrates

1074 kcal/3.4 cal/g carbohydrate = 295 g

Step 4—Make Total Volume

30 cc/kq = 2100 cc

Additional Additives

Electrolytes, minerals, vitamins added (See PN example formula for details)

Drug additives: histamine-2 blockers, insulin, heparin

Prevent Overfeeding! Total Energy Expenditure (TEE)

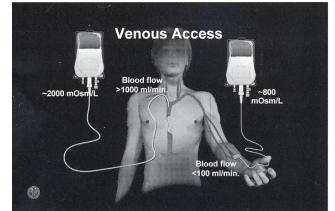
Indirect Calorimetry

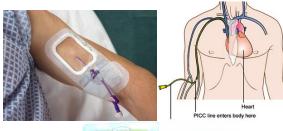
Measures respiratory quotient (how food and fuels are burned) $RQ=CO_2$ eliminated/ O_2 consumed Direct measure of energy needs at rest (REE)

Net RQ	Substrate/Condition
≥ 1.0	lipogenesis / overfeeding
= 0.85	mixed substrate oxidation
≤ 0.7	fat oxidation/underfeeding

Overfeeding Complications

- Hyperglycemia
- Hyperlipidemia
- Fluid overload
- Increased metabolic rate
- Increased work of breathing





Choosing the best central access

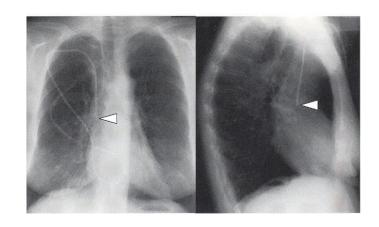
- PICC most common, but increased risk of upper extremity DVT
- Two ports twice the number of flushes (infections)
- One hand is not available to manipulate

- Tunneled subclavian catheter (Hickman)
- Single lumen (dedicated for TPN)
- Both hands available to manipulate
- Silicone catheter for alcohol lock (ostomates)
- Alcohol caps on the luer lock hub(s)

- Implantable vascular access device (i.e. Port-a-cath; Mediport)
- Indwelling (covered by skin)
- Access with Huber needle, GripperMicro needle
- Ideal for occassional/sporadic access

Complications

- Catheter related
 - Mechanical
 - Infectious
 - Thrombotic
- Hepatobiliary disease
- Bone disease
- Decreased glomerular filtration rate
- Trace element and vitamin abnormalities


Management of Line Infection

Remove line

- Staphylococcus aureus
- Candida
- Gram negative bacilli
- Sepsis
- . Subcutaneous infection

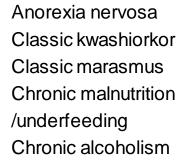
Treatment without removal

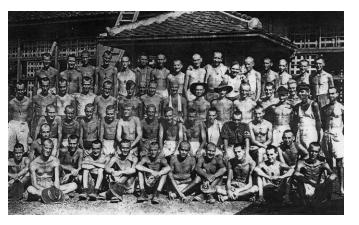
- Antibiotic through all ports
- Urokinase
- Antibiotic lock for prevention

Home Parenteral Nutrition

Central Line Infections

- Staphylococcus epidermidis
- Staphylococcus aureus
- Candida


• Gram-negative bacilli



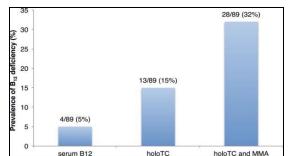
Refeeding Syndrome

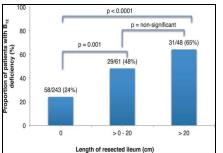
- Rapid worsening of hypokalemia, hypomagnesemia, hypophosphatemia with reintroduction of food (carbs)
- Sodium and water retention
- Subclinical vitamin deficiencies
- Organ failure (heart, lung)
- Cardiac arrhythmias
- Death

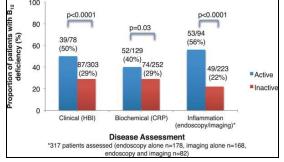
Morbid obesity with massive weight loss/bariatric surgery
Patient unfed for 7-10 days with evidence of stress/depletion
Prolonged fasting
Prolonged IV hydration
Phosphate-deficient TPN

Australian POWs liberated at the end of World War II

- 1. 50% of goal kcal/protein/fluid: days 1,2
- Vigorous repletion with IV phosphate, magnesium, potassium
- 3. MVI; extra Thiamine, Folic acid, Zinc
- 4. 75% of goal kcal/protein/fluids: days 3-7
- 5. Daily monitor of electrolytes, vitals (HR, T, RR) I/O
- 6. Advance to goal rate at 1 week


Special considerations: Vitamin B12


- Source animal protein in diet
- Complex absorption salivary haptocorrin, intrinsic factor, pancreatic exocrine function, normal motility, normal flora, terminal ileal absorption. Potential for interruption at any key step.
- Serum assay affected by acute phase response.
 Remember physiology of absorption clinical suspicion of deficiency.
- Increased destruction with inflammation/nitric oxide.
- Deficiencies megaloblastic anemia, neuropathy, enteropathy.
- Correct with injection subcutaneous requires more frequent replacement.
- Low cost high reward.


ORIGINAL ARTICLE

Prevalence and Risk Factors for Functional Vitamin B₁₂ Deficiency in Patients with Crohn's Disease

Mark G. Ward, MBBS, *Viraj C. Kariyawasam, MBBS, *Sathis B. Mogan, MBBS, *Kamal V. Patel, BSc, MBBS, *Maria Pantelidou, MBBS, BSc, DPMSA, *Agata Sobezyriska-Malefora, MSc, PhD, *François Porté, MBBS, BSc, *Nyree Griffin, MBChB, MD, *Simon H. C. Anderson, MD, *Jeerny D. Sanderson, MD, *Sominic J. Harrington, BSc, MSc, PhD, *and Peter M. Irving, MA, MD* *S

Variable	Adjusted OR	95% CI	P
Ileal resection			
None			
0-20 cm	3.0	1.5 - 6.0	0.002
>20 cm	6.7	3.0-15.0	< 0.000
Ileal inflammation	3.9	2.2 - 6.9	< 0.000
Active disease (HBI)	1.9	0.98 - 3.7	0.06
HBI, Harvey Bradshaw Index	ι.		

- 381 Crohn's disease patients and 141 UC patients
- Holotranscobalamin / MMA testing
- B12 deficiency identified in 33% of CD and 16% of UC Risks factors for B12 deficiency included:
 - ileal resection length < 20 cm: OR 3.0
 - Ileal resection length > 20 cm; OR 6.7
 - Ileal inflammation: OR 3.9
 - Imaging studies demnstrated active terminal ileal inflammation (p,0.0001), increased disease burden (>1 skip liesion, p,0.01, prestenotic dilatation > 3 cm, p=0.01) were associated with B12 deficiency

Special Considerations: Parenteral Iron Replacement

- Oral iron poorly absorbed via proximal GI tract
- Potential for mucosal injury may worsen IBD and adverse effects may cloud clinical picture
- Parenteral (IV) iron is alternative (FDA Class B for pregnancy)
- Iron dextran original compound, requires test dose, risk of anaphylactoid reaction with infusion (including 1st administration).
- Ferric gluconate, iron sucrose less adverse reactions; require more frequent administration.
- Ferric carboxymaltose 750 mg single infusion but 38% with hypophosphatemia due to tubular injury.
- Iron essential for restoration of hemoglobin (oxygen delivery), cytochromes (energy generation), neuronal nitric oxide synthase (motility)

Bottle shown is empty. See product description for additional details.

"Prehabilitation": UPMC Center for Perioperative Care

- Steven Esper, MD, MBA, Medical Director
- Jennifer Holder-Murray, MD, Surgical Director
- Systematic use of a validated risk assessment tool for patients undergoing elective procedures
- Includes nutritional assessment and intervention prior to surgery. Emphasis on high protein, liquid polymeric nutritional replacement. TPN when patients are severe.
- Avoid post-op complications and sending a patient to a nursing home/rehab facilty by using "prehabilitation" prior to the surgical procedure

Summary and Conclusions: Nutrition and Wound Healing

- L. Malnutrition can occur irrespective of Body Mass Index.
- 2. Registered Dieticians are ready and available to provide inpatient Nutrition Assessment. Follow their recommendations!
- 3. Inflammation and wounds worsen nutritional status and increases protein needs
- 4. Consider surgically altered anatomy/physiology when developing a plan to address malnutrition in a compromised gut (i.e. need for ELEMENTAL liquid nutrition, TPN, etc.).
- 5. Consider nutrition intervention early including prior to scheduled surgery with "nutritional prehabilitation" to avoid operative complications (i.e. anastomotic leaks, etc.) and need for post-op rehabilitation.
- 6. Use the gut when it is available with either POLYMERIC (blended food) or ELEMENTAL (predigested food) liquid nutritional feeding.
- 7. When the gut is no longer available, consider early parenteral support (i.e. "TPN") via central access.
- 8. When using TPN, be mindful of essential IV vitamin/micronutrient replacement, be vigilant to prevent and recognize refeeding syndrome, avoid over-feeding and hyperglycemia, emphasis on protein support to facilitate wound healing.