Evaluation and Management of Alcohol-associated Liver Disease

Samer Gawrieh, MD
Division of Gastroenterology and Hepatology
Indiana University School of Medicine

Disclosures

- Research grant support
 - NIH: U24 AA026969, R01 DK121378
 - Industry: Zydus, Viking, SonicIncytes
- Consulting: TransMedics, Pfizer, Spruce

Outline

- Healthcare impact
- What is harmful/hazardous alcohol use?
- Spectrum & presentation
- Factors affecting risk
- Diagnosis
- Prognosis
- Management

Increasing alcohol-related mortality and liver transplant listing for ALD in US

Increased rates of liver transplant listing for severe alcohol-associated hepatitis (AH) in the US

Rethinking harmful/hazardous alcohol use

Women are at higher risk for alcohol associated liver disease at lower levels of consumption than men

Alcohol synergy with obesity increases the risk of fatty liver

Metabolic dysfunction and alcohol-associated liver disease (MetALD)

What's hazardous/harmful alcohol use?

> 1 drink for women> 2 drinks for men

One standard drink: 14 g of alcohol

"I LIMIT MYSELF TO ONE GLASS OF WINE A DAY."

Spectrum of ALD

Asymptomatic/subclinical

Symptomatic

ALD is usually detected late compared to other liver diseases

practice to detect early

Aim for early screening in

Factors affecting ALD risk

PNPLA3 and coffee influence risk and severity of AH

Metabolic and genetic risk factors are associated with severity of ALD

325 Danish patients with biopsy-proven ALD

Steatosis

Active drinking - BMI>30 - TG ≥1.7 mmol/L - PNPLA3 - >20 years alcohol - MBOAT7 - TM6SF2 - HSD17B13 - Age above 50 - Female sex - 0.5 1.0 2.0 4.0 10.0 Proportional odds ratio

Fibrosis

Synergy of alcohol and the metabolic syndrome increases the risk of incident severe liver disease*, even with MAC

6732 Finnish persons, no baseline liver disease. * Hospitalization, liver cancer, or death. Mean follow-up 11.4 years

ALD-Diagnosis 💿

Is steatostic (fatty) liver disease alcohol- related?

- Thorough alcohol use history
- Laboratory parameters (MCV, AST/ALT, GGT)
- Mayo's ALD/NAFLD Index (ANI)*

Biomarkers of alcohol use

Test	Source	Detection Time	Sensitivity	Specificity	PPV	NPV
CDT/%CDT*	Blood	2-3 weeks	21%-50%	50%-100%	64%-100%	86%-93%
EtG	Urine	3-7 days	76%-89%	93%-99%	81%-90%	91%-99%
EtG	Hair	Months	81%-100%	83%-98%	68%-95%	86%-100%
EtS	Urine	3 days	82%	86%	70%	93%
PEth	Blood	2-4 weeks	97%-100%	66%-96%	85%	100%

Non-invasive tests are useful for evaluation of significant fibrosis, inflammation and steatosis in <u>asymptomatic ALD</u>

Significant fibrosis ≥F2

≥ mild inflammation

Mild steatosis ≥S1

Clinical diagnosis of AH: NIAAA definition

- Onset of jaundice within prior 8 weeks
- Ongoing consumption of >40
 (female) or 60 (male) g
 alcohol/day for > 6 months,
 with <60 days of abstinence
 before the onset of jaundice
- AST >50, AST/ALT >1.5, and both values <400 IU/L Serum total bilirubin >3.0 mg/dl

ALD-Prognosis ©

Major determinants of survival in patients with AH

Severity

Relapse to alcohol use

Lille response to steroids*

*Survival for US Lille non-responders is different

Patidar KR et al. Hepatol Commun. 2023

Louvet A et al. Hepatology 2007

Causes of death in patients with AH

Predicting AH severity and prognosis: MELD superior to MDF and other scores

ALD-Management

Integrated management of ALD and AUD

Screen for AUD at every encounter

Offer brief motivational interviewing

Manage cirrhosis complications similar to other liver diseases

Consider AUD Rx to prevent alcohol relapse for those with AUD

Involve AUD specialists in care of those with moderate-severe AUD

Refer eligible candidates to LT

Those with < 6 months of abstinence can be evaluated for early LT if at low risk for relapse and otherwise meet LT eligibility criteria

Steroids with Lille stopping rule result in superior survival to anakinra+zinc in patients with severe AH

Overall 90-day survival

Transplant free 90-day survival

Steroids with Lille stopping rule result in lower rates of AKI to anakinra+zinc in patients with severe AH

Who are the patients with severe AH most likely to respond to corticosteroids?

Validation in US studies is necessary

Infections and antibiotics use in patients with severe AH

- Infections are a major cause of death
- Screen for infection on admission
- Treat proven infections
- Controlled infections are generally not a contraindication to steroids use

Effective nutrition is essential part of AH management

- Screen for adequacy of protein-calorie oral intake on admission
- Offer oral nutritional supplements when needed
- Place NJ for enteral feed early when needed

Liver transplantation for alcohol-associated hepatitis in the US

Profound geographic variation in frequency

Frequency (relative to all transplants within each region)

Excellent patients' outcomes

Relapse prevention therapy in patients with ALD & AUD

Medication	Dosing	Metabolism (M) and Excretion (E)	Mechanism of Action	ALD Considerations	
Naltrexone [*]	50 mg/d orally or 380 mg	M: Hepatic	Opioid receptor	1.Not studied in ALD 2.Hepatotoxicity concerns	
	monthly sq	E: Mostly renal, fecal 2%-3%	antagonist		
Acamprosate [*]	666 mg tid	M: None	NMDA receptor	1.Not studied in ALD 2.No reported instances of DILI	
		E: Renal	antagonist		
Gabapentin	600-1,800 mg/d	M: None	Modulates GABA activity	1.Not studied in ALD	
		E: Renal 75%, fecal 25%	at presynaptic calcium channels	2.Monitor closely for renal dysfunction and worsening mental status/sedation	
Baclofen	30-60 mg/d	M: Hepatic, limited	GABA-B receptor	Single RCT in patients with ALD showed benefit	
		E: Renal	agonist		
Topiramate	75-400 mg/d	M: Not extensively metabolized	GABA action augmentation, glutamate	Not studied in ALD	
		E: Renal	antagonism		

Disulfiram is not included on this list because it is not recommended for use in patients with ALD.

Approach to AUD therapy in patients presenting with ALD to Indiana University

Take-home messages

- ALD is a leading and rising cause of liver disease in the US
- Screen early for AUD
- Integrate AUD management with ALD management
- Offer steroids with Lille stopping rule for those with severe AH
- Nutritional support is essential part of ALD management
- Referral for early (< 6 months of abstinence) LT evaluation
 - Select patients with severe AH not responding to steroids
 - Patient with decompensated ALD-related cirrhosis and/or early HCC

Thank you

