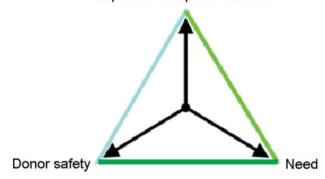


Innovations in Living Donor Liver Transplant

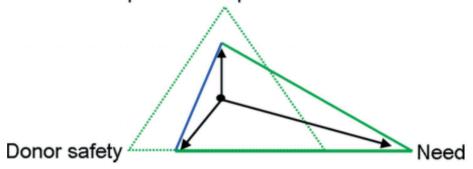
Kiran Bambha, MD, MSc Transplant Hepatology Thomas E Starzl Transplantation Institute UPMC Center for Liver Care

Outline

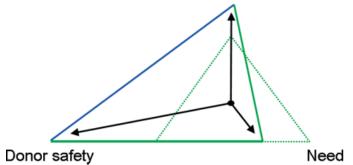
- Ethics of LDLT
- LDLT Trends
- Donor-Recipient Incompatibility
- High and Low MELD Recipients
- Older Donors
- Steatotic Donors
- LDLT in Transplant Oncology
- Advances in Surgical Techniques


Equipoise

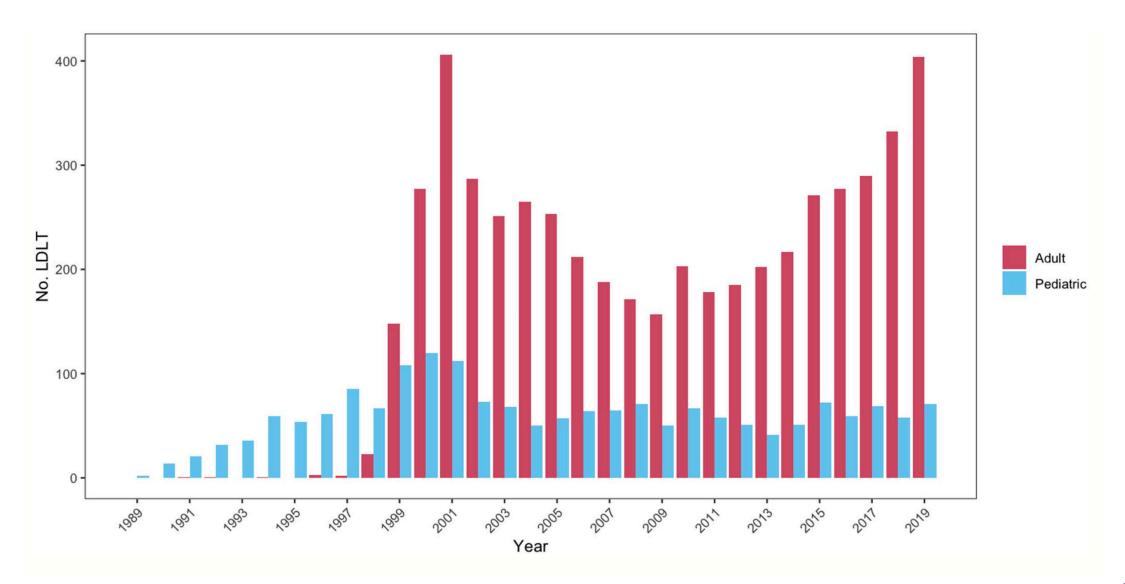
- -Foundational ethical principles to justify living organ donation:
- Autonomy
- Beneficence
- Nonmaleficence *
- Distributive justice (more significant role in deceased donor organ allocation)
- Assessing and optimizing donor safety, evaluating expected recipient outcomes, and considering individual and societal needs
- Equipoise in living donor: risk to donor, balanced by benefit to recipient



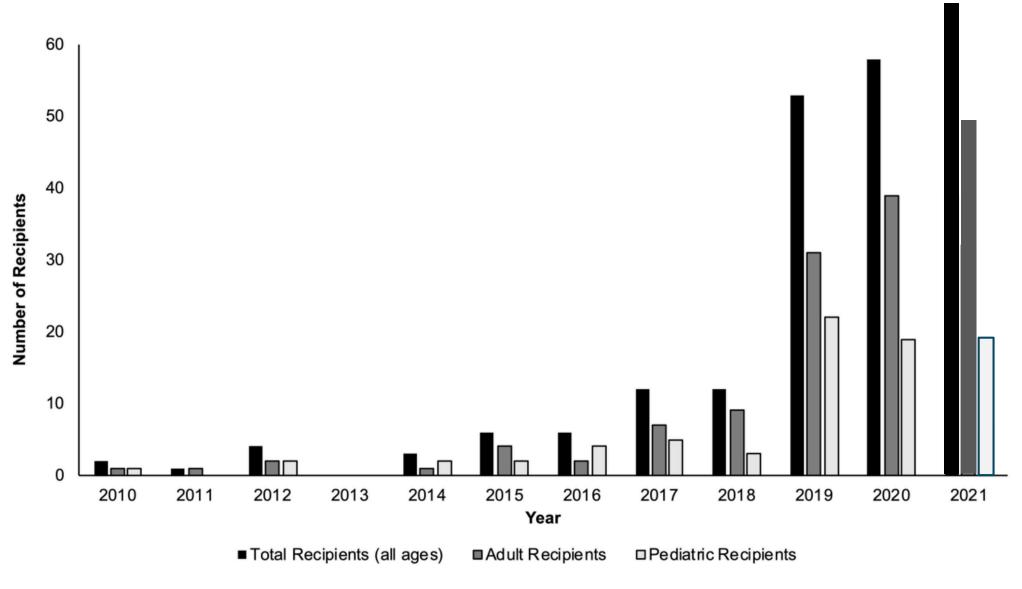
Equipoise


Expected Recipient Outcome

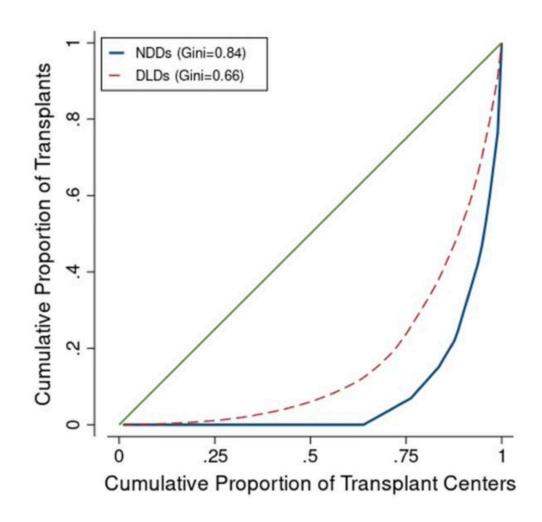
Expected Recipient Outcome



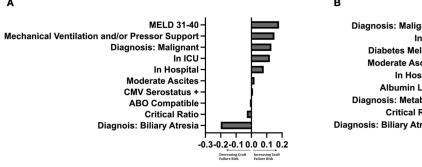
Expected Recipient Outcome

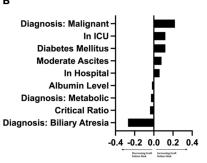


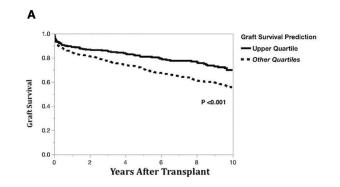
U.S. LDLT Trends

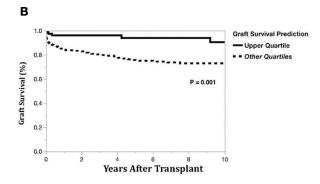


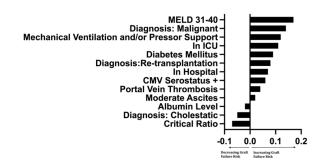
U.S. Non-Directed Donor LDLT Trends

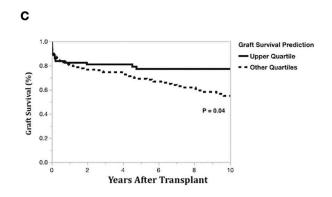



Non-Directed Living Liver Donors

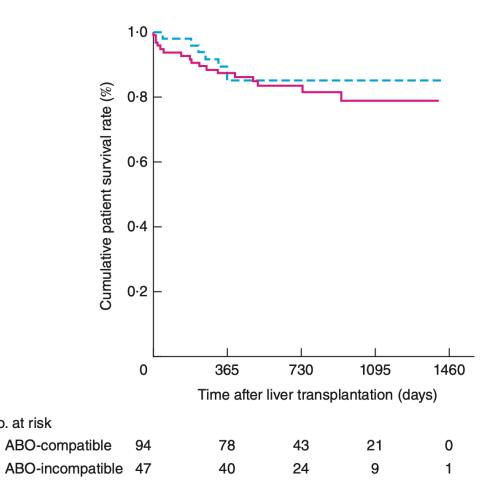


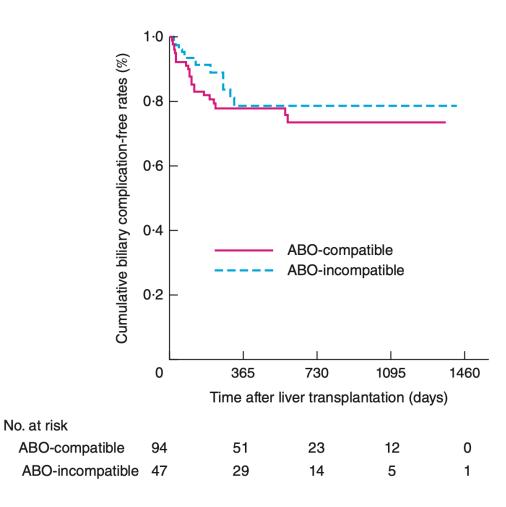



Maximizing Utility of Nondirected LLD Grafts Using Machine Learning



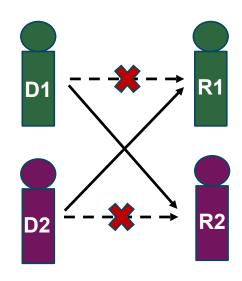
C

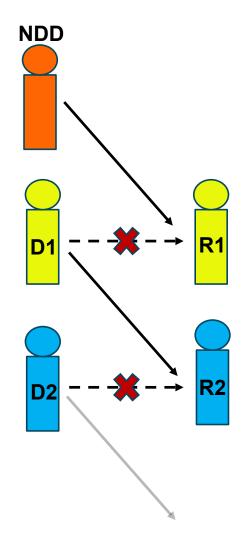

Donor-Recipient Incompatibility


- LDLT accounts for about 6% of all liver transplantations in the US

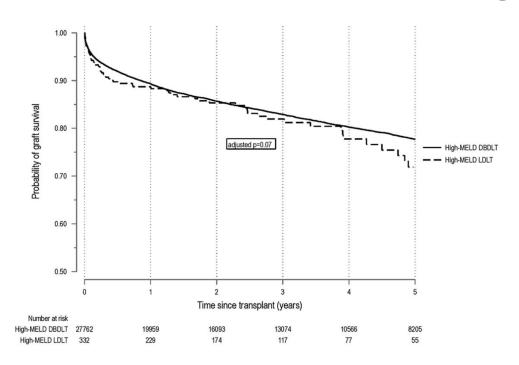
- Most common reasons for donor-recipient incompatibility
 - ABO incompatibility between the donor and the recipient
 - Donor liver graft size is too small for the recipient
 - Potential remnant liver volume is too small for the donor

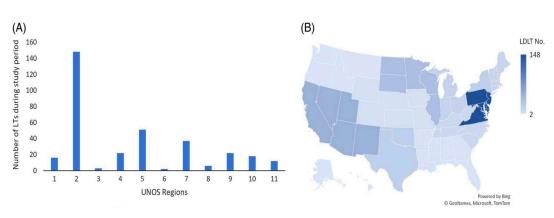
ABOI LDLT





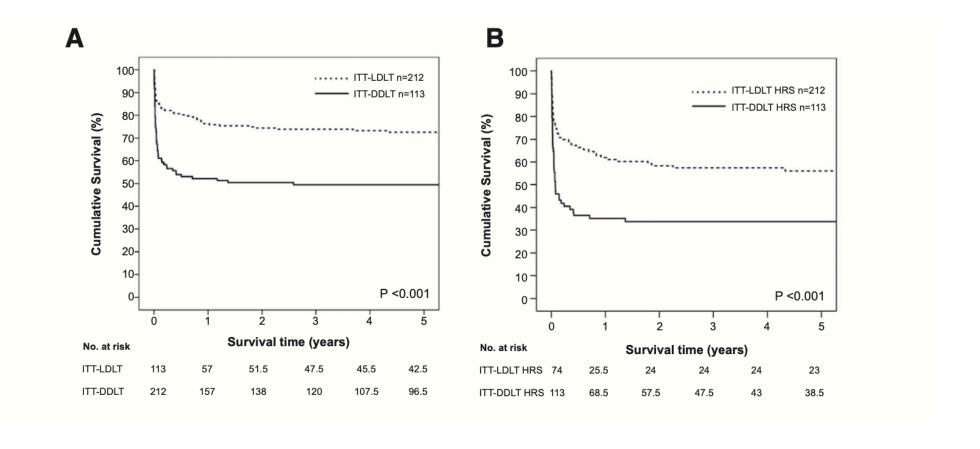
No. at risk


Liver Paired Exchange/Donor Chains



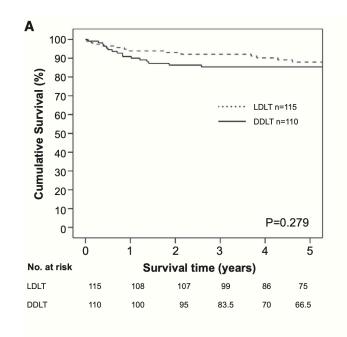
LDLT in High MELD Recipients

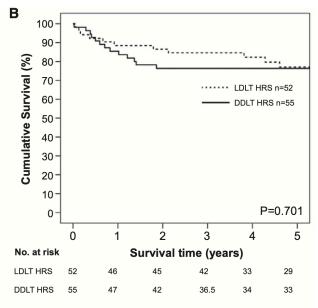
								(A)		
	HM-LDLT LM-LDLT			Hazard Ratio			Hazard Ratio			
Study or Subgroup	Events	Total	Events	Total	O-E	Variance	Weight	Exp[(O-E) / V], Fixed, 95% CI		Exp[(O-E) / V], Fixed, 95% CI
Chok, 2013	4	75	2	68	0.037	1.496	3.8%	1.03 [0.21, 5.09]		
Dabbous, 2016	6	33	5	38	1.74	2.23	5.6%	2.18 [0.59, 8.11]		+
Jiang, 2013	4	29	5	41	0.598	2.18	5.5%	1.32 [0.35, 4.96]		
Li, 2013	4	16	15	102	0.2984	2.226	5.6%	1.14 [0.31, 4.25]		 -
Poon, 2012	10	120	1	23	-0.57	1.48	3.7%	0.68 [0.14, 3.41]		
Selzner, 2010	18	227	1	23	0.785	4.76	12.0%	1.18 [0.48, 2.90]		
Yadav, 2017	24	151	101	849	3.11	16.15	40.5%	1.21 [0.74, 1.97]		-
Yi, 2008	10	52	14	105	0.652	5.83	14.6%	1.12 [0.50, 2.52]		
Yoshizumi, 2007	7	25	13	94	1.24	3.48	8.7%	1.43 [0.50, 4.08]		- •
Total (95% CI)		728		1343			100.0%	1.22 [0.89, 1.66]		•
Total events	87		157							
Heterogeneity: Chi ² =	1.46, df	= 8 (P	= 0.99);	$I^2 = 0\%$	6				0.01	0.1 1 10 100
Test for overall effect	Z = 1.25	5 (P = 0)	0.21)						0.01	Favours [HM-LDLT] Favours [LM-LDLT]

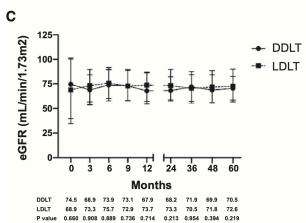

	HM-LE	DLT	LM-LI	DLT				Hazard Ratio	Hazard Ratio
Study or Subgroup	Events	Total	Events	Total	O-E	Variance	Weight	Exp[(O-E) / V], Fixed, 95% CI	I Exp[(O-E) / V], Fixed, 95% CI
Chok, 2013	5	75	3	68	0.0423	1.995	10.1%	1.02 [0.26, 4.09]	· · · · · · · · · · · · · · · · · · ·
Dabbous, 2016	6	33	2	38	1.74	2.23	11.3%	2.18 [0.59, 8.11]	ı
Jiang, 2013	9	29	7	41	0.798	3.88	19.7%	1.23 [0.45, 3.32]	l - -
Li, 2013	4	16	22	102	0.349	3.04	15.4%	1.12 [0.36, 3.45]	ı
Poon, 2012	1	23	16	120	-0.711	2.29	11.6%	0.73 [0.20, 2.68]	ı - • -
Selzner, 2010	7	44	39	227	-0.9	6.256	31.8%	0.87 [0.40, 1.90]	I —
Total (95% CI)		220		596			100.0%	1.07 [0.69, 1.66]	· •
Total events	32		89						
Heterogeneity: Chi ² =	1.82, df	= 5 (P		0.01 0.1 1 10 10					
Test for overall effect	Z = 0.30	P = 0	0.77)						Favours [HM-LDLT] Favours [LM-LDLT]

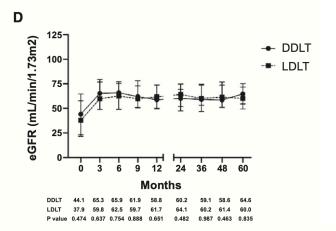
(B)

(C)										
	HM-LI	DLT	LM-L	OLT				Hazard Ratio		Hazard Ratio
Study or Subgroup	Events	Total	Events	Total	O-E	Variance	Weight	Exp[(O-E) / V], Fixed, 95% CI		Exp[(O-E) / V], Fixed, 95% CI
Chok, 2013	5	75	3	68	0.0423	1.995	8.6%	1.02 [0.26, 4.09]		
Dabbous, 2016	8	33	3	38	1.92	2.73	11.8%	2.02 [0.62, 6.62]		 • -
Jiang, 2013	9	29	7	41	0.842	4.36	18.8%	1.21 [0.47, 3.10]		- -
Poon, 2012	1	23	16	120	-0.711	2.29	9.9%	0.73 [0.20, 2.68]		
Selzner, 2010	7	44	41	227	-0.92	6.258	27.0%	0.86 [0.39, 1.89]		
Yoshizumi, 2007	10	25	23	94	2.9	5.58	24.0%	1.68 [0.73, 3.86]		 •
Total (95% CI)		229		588			100.0%	1.19 [0.79, 1.79]		•
Total events	40		93							
Heterogeneity: Chi ² = 2.66, df = 5 (P = 0.75); I ² = 0%										
Test for overall effect: $Z = 0.85$ ($P = 0.40$) $ \begin{array}{cccc} 0.01 & 0.1 & 1 & 10 & 100 \\ \hline & & & & & & & & & & & & & & & & & & $										

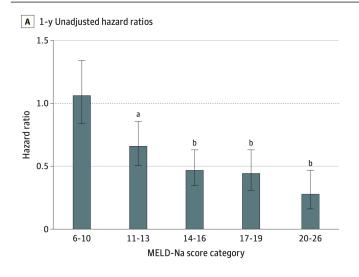



LDLT in High MELD and Hepatorenal Syndrome



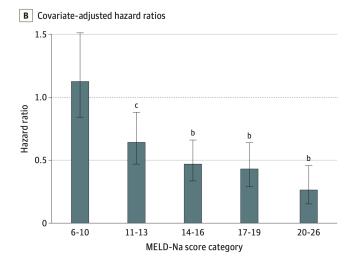
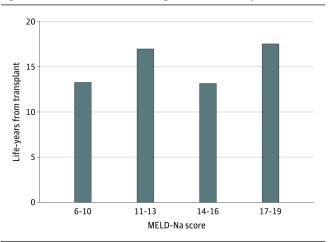


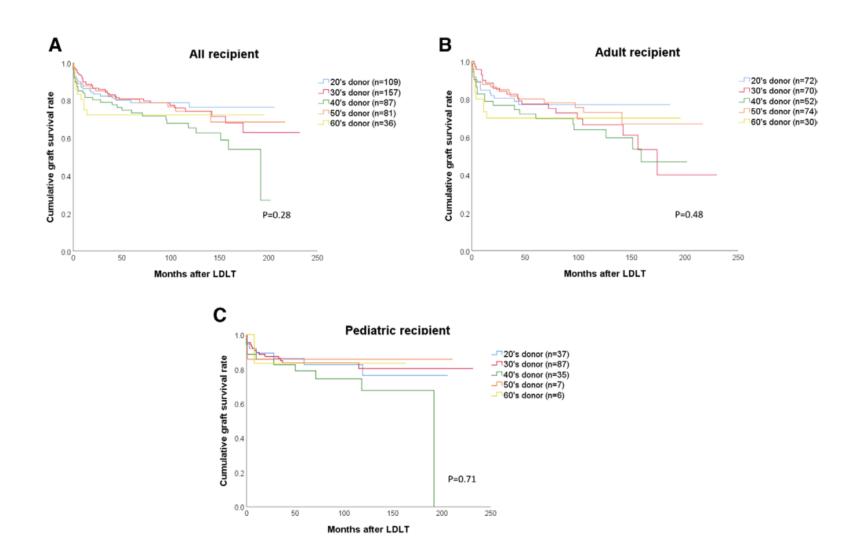
LDLT in High MELD and Hepatorenal Syndrome



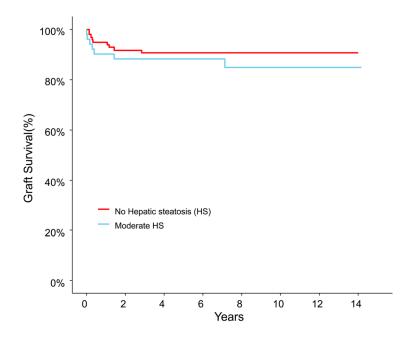
LDLT in Low MELD Recipients

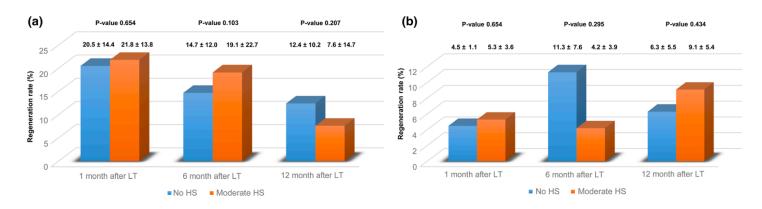
Figure 1. One-Year Mortality Risk Across Model for End-stage Liver Disease Incorporating Sodium Levels (MELD-Na) Score Categories for Patients Receiving a Living-Donor Liver Transplant vs Remaining on the Wait List, 2011-2021

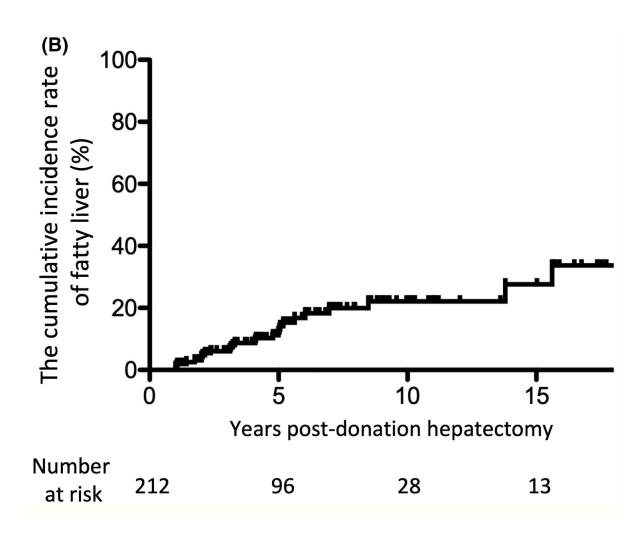



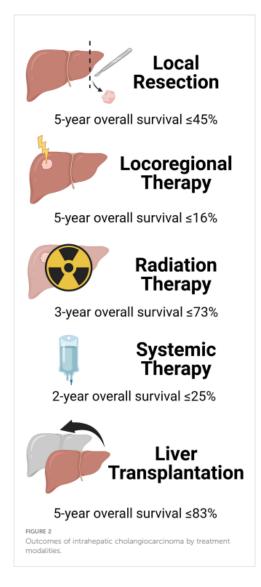

Figure 3. Life-Years Saved After Living-Donor Liver Transplant

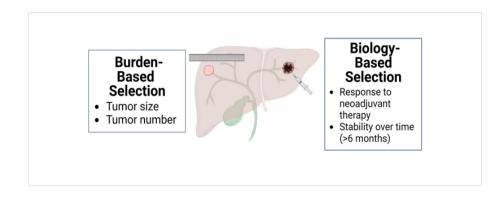
Life-years from transplant (LYFT) were calculated for Model for End-stage Liver Disease incorporating sodium levels (MELD-Na) groups with scores below 20 using parametric survival regression and extrapolated to 10 000 days, or 27.38 years. The MELD-Na score category of 20 to 26 was excluded from this analysis because this group was underpowered. The overall projected survival benefit, or life-years saved, was calculated by subtracting the median number of days on the wait list from life-years from transplant. The median life-years saved ranged from 13.2 to 17.6 years.

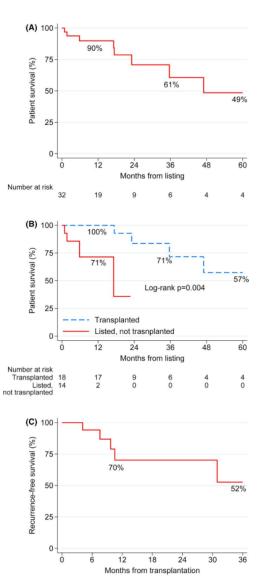



Older Donors


Steatotic Donor Livers




Donors with Steatosis - Post Donation



Intrahepatic Cholangiocarcinoma (iCCA)

Colorectal Cancer Metastases to the Liver

Table 2. Oncologic Treatment Characteristics of Patients Who Underwent Total Hepatectomy and Living-Donor LT

Patient	Timing of CRLM	Systemic treatment	Prior resection	Local therapy	Time fron diagnosis of CRLM to LT, y
1	Synchronous metastases	FOLFOX, FOLFIRI, targeted agent	None	None	1.6
2	Synchronous metastases	FOLFOX, FOLFIRI, targeted agent	None	None	5.5
3	Synchronous metastases	FOLFOX, FOLFIRI, targeted agent	Wedge resection, aborted ALPPS	None	1.6
4	Synchronous metastases	FOLFOX, FOLFIRI, targeted agent	None	None	1.4
5	Synchronous metastases	FOLFOX, targeted agent	Right hemihepatectomy	Ablation	1.1
6	Synchronous metastases	FOLFOXIRI, targeted agent	Bisegmentectomy	Hepatic artery infusion	1.4
7	Synchronous metastases	FOLFOX, FOLFIRI, targeted agent	None	Ablation	2.3
8	Metachronous metastases	FOLFIRI, targeted agent	Right posterior sectionectomy, wedge resection	Ablation, hepatic artery infusion	7.8
9	Synchronous metastases	FOLFIRI, targeted agent	None	None	1.7
10	Synchronous metastases	FOLFIRI, targeted agent	None	Hepatic artery infusion	2.0

Figure. Kaplan-Meier Estimates of Overall and Recurrence-Free Survival in Patients Who Underwent Total Hepatectomy and Living-Donor Liver Transplant

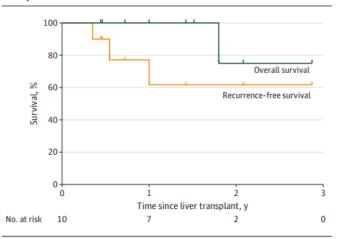
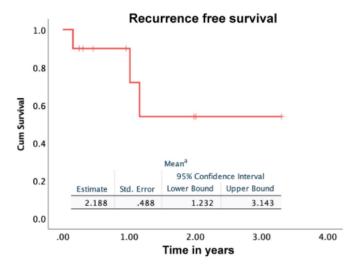



Table 4. Liver Explant Pathology and Postoperative Complications of Patients With Unresectable CRLMs Who Underwent Total Hepatectomy and Living-Donor Liver Transplant

Pathologic and postoperative outcome	Patients, No. (%) (N = 10)
Viable tumor	
Yes	9 (90)
No	1 (10)
Underlying liver histology	
Normal parenchyma	5 (50)
Cirrhosis	3 (30)
Steatosis	1 (10)
Scarring, necrosis, and vascular changes	1 (10)
Portal nodal involvement	
Negative	9 (90)
Positive	1 (10)
CD complications	
None	3 (30)
II	3 (30)
IIIA	2 (20)
IIIB	2 (20)

Abbreviations: CD, Clavien-Dindo; CRLMs, colorectal liver metastases.

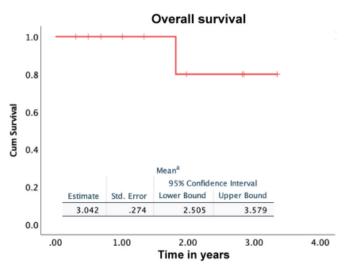
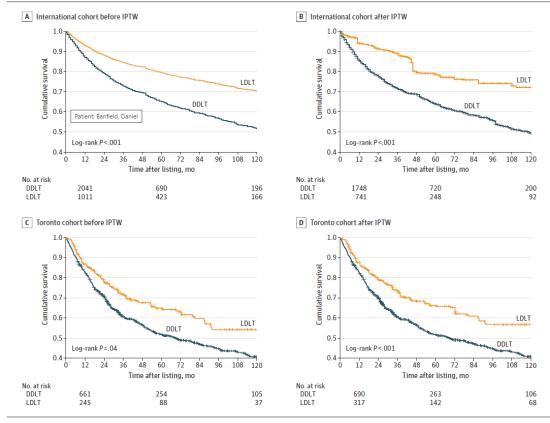



Figure. 1. Recurrence and overall survival of the study population.

HCC and **LDLT**

Figure 2. Intention-to-Treat Patient Survival Rates Before and After Inverse Probability of Treatment Weighting (IPTW) in the International Cohort (A and B) and Toronto Cohort (C and D)

DDLT indicates deceased-donor liver transplant; LDLT, living-donor liver transplant.

	No. (%)						
	International coho	ort	Toronto cohort				
Variable	Total	DDLT	LDLT	Total	DDLT	LDLT	
No. (%)	3052 (100.0)	2041 (66.9)	1011 (33.1)	906 (100.0)	661 (73.0)	245 (27.0)	
Center volume >70 LT cases/y	2227 (73.0)	1587 (77.8)	640 (63.3)	NA	NA	NA	
LT performed before 2010	1458 (47.8)	1102 (54.0)	356 (35.2)	487 (53.8)	366 (55.4)	121 (49.4)	
Age at first referral, median (IQR), y	58 (53-63)	59 (54-63)	57 (52-62)	59 (53-63)	59 (53-63)	59 (54-63)	
Male sex	2447 (80.2)	1707 (83.6)	740 (73.2)	743 (82.0)	544 (82.3)	199 (81.2)	
Female sex	605 (19.8)	334 (16.4)	271 (26.8)	163 (18.0)	117 (17.7)	46 (18.8)	
Underlying liver disease							
HCV	1383 (45.3)	889 (43.6)	494 (48.9)	471 (52.0)	335 (50.7)	136 (55.5)	
HBV	880 (28.8)	493 (24.2)	387 (38.3)	194 (21.4)	169 (25.6)	25 (10.2)	
Alcohol-related cirrhosis	630 (20.6)	539 (26.4)	91 (9.0)	121 (13.4)	85 (12.9)	36 (14.7)	
NASH	204 (6.7)	140 (6.9)	64 (6.3)	78 (8.6)	49 (7.4)	29 (11.8)	
Other	156 (5.1)	129 (6.3)	27 (2.7)	45 (5.0)	26 (3.9)	19 (7.8)	
Waiting time duration, me Age/Gender: 52 year old /	(1-10)	6 (3-13)	1 (0-2)	6 (3-11)	6 (3-12)	5 (3-8)	
MELD score at first referral, median (IQR)	12 (9-16)	12 (9-16)	12 (9-15)	10 (8-14)	10 (8-14)	11 (8-14)	
Tumor characteristics at first referral							
Diameter of the major lesion, median (IQR), cm	2.5 (1.8-3.7)	2.5 (1.8-3.8)	2.5 (1.7-3.6)	2.7 (1.9-3.9)	2.7 (1.9-3.7)	2.9 (1.7-4.4	
No. of lesions, median (IQR)	2 (1-3)	1 (1-3)	2 (1-3)	1 (1-2)	1 (1-2)	1 (1-2)	
Outside of MC	959 (31.4)	601 (29.4)	358 (35.4)	267 (29.5)	185 (28.9)	82 (33.5)	
Tumor characteristics at LT or dropout							
Diameter of the major lesion, median (IQR), cm	2.2 (1.4-3.3)	2.1 (1.2-3.0)	2.5 (1.7-3.5)	2.0 (0.0-3.6)	2.0 (0.0-3.5)	2.2 (0.0-3.9	
No. of lesions, median (IQR)	2 (1-3)	2 (1-3)	2 (1-3)	1 (0-3)	1 (0-3)	1 (0-2)	
Outside of MC	912 (29.9)	553 (27.1)	359 (35.5)	269 (29.7)	201 (30.4)	68 (27.8)	
AFP level, median (IQR), ng/mL							
At first referral	14 (5-60)	11 (5-43)	22 (7-114)	11 (5-42)	12 (5-43)	10 (5-41)	
At LT or dropout	11 (4-56)	10 (4-47)	14 (4-77)	11 (5-62)	12 (5-62)	10 (5-60)	
LRT	2369 (77.6)	1819 (89.1)	550 (54.4)	623 (68.8)	474 (71.7)	149 (60.8)	
Type of LRT							
TACE	1857 (60.8)	1451 (71.1)	406 (40.2)	146 (16.1)	104 (15.7)	42 (17.1)	
PEI	486 (15.9)	402 (19.7)	84 (8.3)	22 (2.4)	18 (2.7)	4 (1.6)	
RFA	743 (24.3)	506 (24.8)	237 (23.4)	423 (46.7)	329 (49.8)	94 (38.4)	
Hepatic resection	266 (8.7)	218 (10.7)	48 (4.7)	14 (1.5)	14 (2.1)	0	
Other	251 (8.2)	229 (11.2)	22 (2.2)	25 (2.8)	14 (2.1)	11 (4.5)	
Dropout	295 (7.8)	295 (14.5)	0	247 (27.3)	213 (32.2)	34 (13.9)	
Death during waiting time	159 (5.2)	159 (7.8)	0	70 (7.7)	59 (8.9)	11 (4.5)	
Tumor progression	80 (2.6)	80 (3.9)	0	129 (14.3)	109 (16.5)	20 (8.2)	
Posttransplant recurrence	360 (11.8)	223 (12.9)	137 (13.6)	116 (17.6)	88 (19.7)	28 (13.3)	

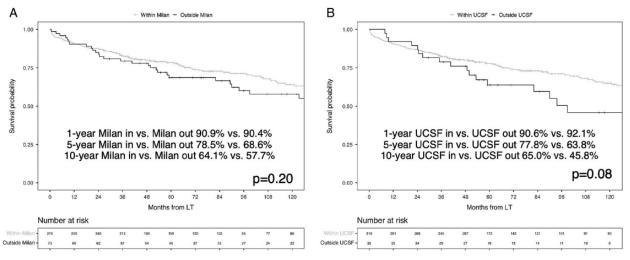


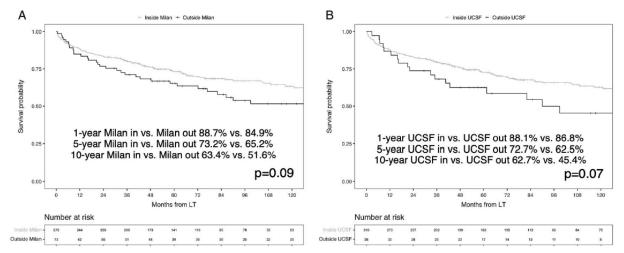
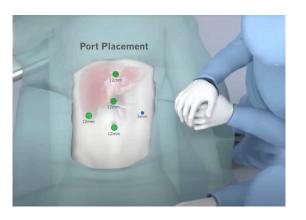
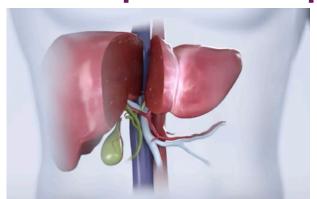
TABLE 2. Demographic, Clinicopathologic, Tumor, and Recurrence Data for Patients

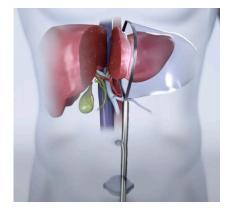
	Overall (N = 360); n (%
Preoperatively available data	
Patient demographic characteristics	
Sex	
Male	264 (73)
Female	96 (27)
Age (yr); mean (SD)	57 (8.4)
Laboratory MELD at transplantation; median (IQR)	14 (9–18)
Waiting time (mo); median (IQR)	4.1 (2.3–7.9)
Time from diagnosis to listing (mo);	4.8 (3.0-9.7)
median (IQR)	
Diagnosis	
HCV	234 (65)
HBV	29 (8)
Alcohol-related liver disease	42 (12)
Cryptogenic/NASH	36 (10)
Other (PBC, PSC, AIH,	27 (8)
hemochromatosis)	=, (0)
Tumor characteristics at transplantation	
Size of largest tumor (cm); mean (SD)	2.5 (2.5)
Tumor size (largest mass) > 3 cm	79 (22)
Multifocal HCC	124 (34)
T1 category tumors at diagnosis	61 (17)
AFP level at diagnosis (ng/mL); median (IQR)	15 (6–46)
Maximum AFP level (ng/mL); median (IQR)	30 (10–126)
Final AFP level (ng/mL); median (IQR)	11 (5-46)
Not meeting MC at diagnosis	106 (30)
Not meeting UCSF at diagnosis	61 (17)
Not meeting MC at transplantation	73 (21)
Not meeting UCSF at transplantation	38 (11)
Not meeting MC at pathology	155 (44)
Not meeting UCSF at pathology	141 (40)
French-AFP score > 2	37 (11)
Receiving LRT	246 (72)
NYCA score,	
Low (0-2)	193 (63)
Acceptable (3-6)	96 (31)
High (≥ 7)	17 (6)
Recurrence/survival data	21 (0)
Recurrence rates	58 (16)
RFS (yr); %	20 (20)
1	94.4
3	87.9
5	83.7
OS (yr); %	03.7
1	91.1
3	81.6
5	75.6
Time from recurrence to death (mo);	14.0 (6.6–29.9)
median (IQR)	14.0 (0.0-25.5)
	estitic Pairw: HCV harvitic (

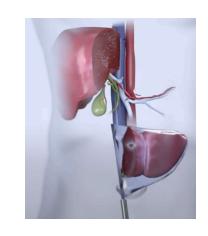
AIH indicates Autoimmune hepatitis; HBV, hepatitis B virus; HCV, hepatitis C virus; LRT, Locoregional therapy; MELD, Model for End-stage liver disease; NASH, nonalcoholic steatohepatitis; PBC, Primary biliary cholangitis; PSC, Primary selerosing cholangitis.

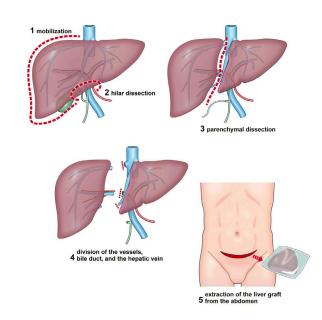
HCC Beyond Milan

FIG. 1. Post-LDLT survival for patients (A) within MC versus outside MC at transplantation and (B) within UCSF versus outside UCSF at transplantation.

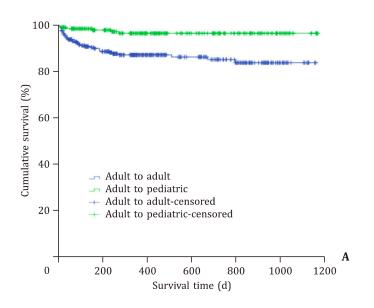

FIG. 2. Post-LDLT RFS for patients within (A) MC versus outside MC at transplantation and (B) within UCSF versus outside UCSF at transplantation.




Laparoscopic LDLT



Robotic Living Donor Hepatectomy



Robotic Living Donor Hepatectomy Series of 501 cases in Saudi Arabia

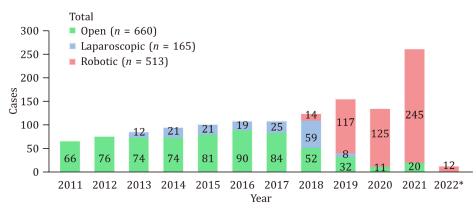


Fig. 1. Evolution of donor hepatectomy techniques during the period of 2011-2022*.

Robotic vs Laparoscopic LDLT

Robotic platform

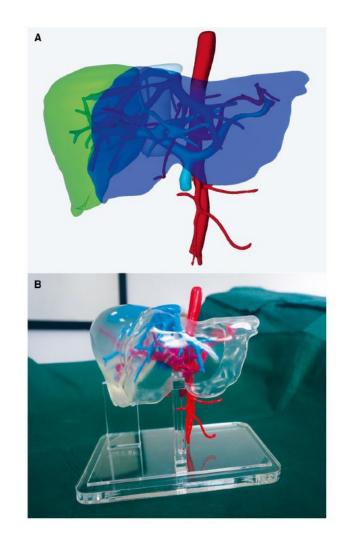
- Steady
- Superior visualization with amplified, 10x magnification
- Optimal ergonomics with tremor-free instrumental movements
- · Wider range of movement
- Precise dissection capabilities
 - Easier and more expeditious suturing abilities.

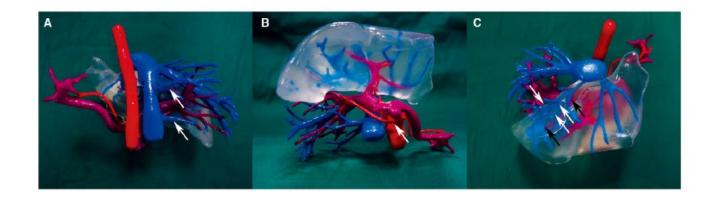
Laparoscopy

- Eliminating the long abdominal incision and its sequels (wound infection, Keloid scar, hernia etc.)
- Less pain
- Better visualization
- Early recovery

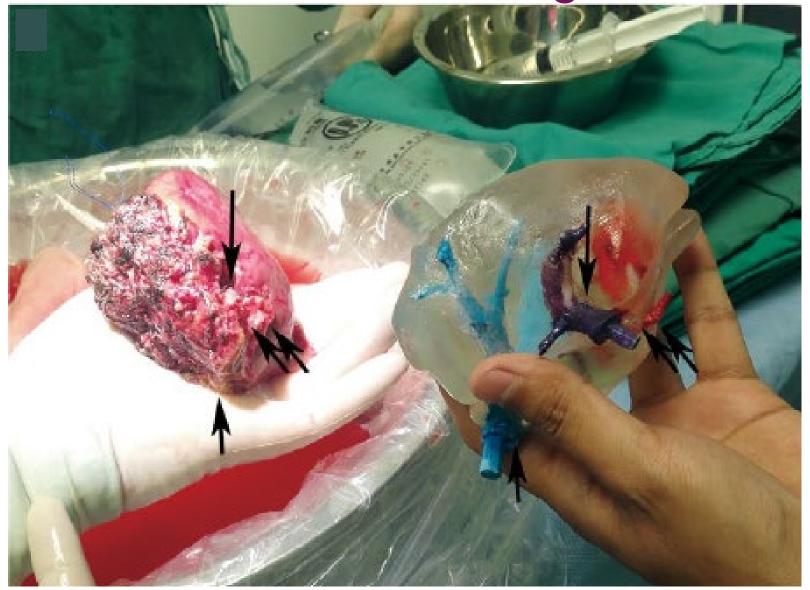
- Application of CUSA in parenchymal transection.
- Faster instrumental exchange

Surgical Approaches in LDLT





3-D Liver Printing



3-D Liver Printing

